1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
s2008m [1.1K]
3 years ago
14

Pls help. I WILL MARK BRAINLIEST!

Mathematics
2 answers:
goblinko [34]3 years ago
6 0

Answer:

c

Step-by-step explanation:

because if you look at the line below it it shows 180 degrees because it is a straight line if that makes sense. if not just trust me.

Over [174]3 years ago
5 0

Im sorry- everyone is saying its C so- Uh... sorry :<

You might be interested in
Solve using the quadratic formula. Approximate answers to the nearest tenth.
Thepotemich [5.8K]

Answer:

\displaystyle x = 2, \ 3

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Standard Form: ax² + bx + c = 0
  • Quadratic Formula: \displaystyle x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify variables</em>

x² - 5x + 6

↓

<em>a</em> = 1, <em>b</em> = -5, <em>c</em> = 6

<u>Step 2: Solve for </u><em><u>x</u></em>

  1. Substitute in variables [Quadratic Formula]:                                                   \displaystyle x = \frac{5 \pm \sqrt{(-5)^2-4(1)(6)}}{2(1)}
  2. [√Radical] Evaluate exponents:                                                                       \displaystyle x = \frac{5 \pm \sqrt{25-4(1)(6)}}{2(1)}
  3. [√Radical] Multiply:                                                                                           \displaystyle x = \frac{5 \pm \sqrt{25-24}}{2(1)}
  4. [√Radical] Subtract:                                                                                          \displaystyle x = \frac{5 \pm \sqrt{1}}{2(1)}
  5. [√Radical] Evaluate:                                                                                         \displaystyle x = \frac{5 \pm 1}{2(1)}
  6. Multiply:                                                                                                             \displaystyle x = \frac{5 \pm 1}{2}
  7. Add/Subtract:                                                                                                    \displaystyle x = \frac{4}{2}, \ \frac{6}{2}
  8. Divide:                                                                                                               \displaystyle x = 2, \ 3
6 0
3 years ago
Stefon is paid $25 to mow a lawn. This amount is $4 less than twice the amount he received when he first began mowing. Use the m
Neko [114]

Answer:

He used to receive $14.50.

Step-by-step explanation:

Let x = amount he used to receive.

Now he receives 2x - 4.

Now he receives $25.

2x - 4 = 25

2x = 29

x = 14.5

Answer: He used to receive $14.50.

5 0
2 years ago
Read 2 more answers
Find the zeros in the function 3x2+ 6 = 0
sattari [20]

Answer:

x = ± i \sqrt{2}

Step-by-step explanation:

Given

3x² + 6 = 0 ( subtract 6 from both sides )

3x² = - 6 ( divide both sides by 3 )

x² = - 2 ( take the square root of both sides )

x = ± \sqrt{-2}

  = ± \sqrt{2(-1)}

  = ± (\sqrt{2} × \sqrt{-1}) → \sqrt{-1} = i

  = ± i \sqrt{2}

5 0
4 years ago
Solve for x !! Help !!
zheka24 [161]

Answer:

9

Step-by-step explanation:

2x-9+x-2=16

3x-11=16

3x=27

x=9

7 0
3 years ago
Read 2 more answers
Use the substitution u = tan(x) to evaluate the following. int_0^(pi/6) (text(tan) ^2 x text( sec) ^4 x) text( ) dx
Rudiy27
If we use the substitution u = \tan x, then du = \sec^2 {x}\ dx. If you try substituting just u and du into the integrand, though, you'll notice that there's a \sec^2x left over that we have to deal with.

To get rid of this problem, use the identity \tan^2 x + 1 = \sec^2 x and substitute in the left side of the identity for the extra \sec^2x, as shown:

\int\limits^{\pi/6}_0 {tan^2 x \ sec^4 x} \, dx
\int\limits^{\pi/6}_0 {tan^2 x \ (tan^2 x + 1) \ sec^2 x} \, dx

From there, we can substitute in u and du, and then evaluate:

\int\limits^{\pi/6}_0 {tan^2 x \ (tan^2 x + 1) \ sec^2 x} \, dx
\int\limits^{\frac{1}{\sqrt{3}}}_0 {u^2(u^2 + 1)} \, du
\int\limits^{\frac{1}{\sqrt{3}}}_0 {u^4 + u^2} \, du
= \left.\frac{u^5}{5} + \frac{u^3}{3}\right|_0^\frac{1}{\sqrt{3}}
= (\frac{(\frac{1}{\sqrt{3}})^5}{5} + \frac{(\frac{1}{\sqrt{3}})^3}{3}) - (\frac{(0)^5}{5} + \frac{(0)^3}{3})
= \frac{1}{45\sqrt{3}} + \frac{1}{9\sqrt{3}} = \frac{6}{45\sqrt{3}} = \bf \frac{2}{15\sqrt{3}}


8 0
3 years ago
Other questions:
  • In a walk fir charity,you. Walk at a rate of 100 meters per minute.how long does it take you to walk 2 kilometers
    9·1 answer
  • Choose the system of equations that matches the following graph:
    15·1 answer
  • Please help! Which line models the data given below?
    15·1 answer
  • Which linear equation represent the graph
    6·1 answer
  • Henry hit 3 more than half as many home runs as Jack hit last season. Henry hit a total of 8 home runs.
    14·1 answer
  • What the answer is I really need help
    9·2 answers
  • How to divide 32 by 6.40
    12·1 answer
  • If g(x) = 3/4 x + 2, find g(-12).
    15·1 answer
  • What is the definition of a ratio
    10·2 answers
  • Using the graph, determine the coordinates of the y-intercept of the parabola.<br> TT help
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!