Answer:
240
Step-by-step explanation:
Answer:
?????......????.........??????
Answer:
d
Step-by-step explanation:
gfstikuhbbcwdjonngbb1519360
Answer:
<em></em>
<em></em>
<em></em>
Step-by-step explanation:
<em>Your question is incomplete without an attachment (See attachment)</em>
Required
Determine the area of the shaded part
From the attachment;
<em>Assume that the shaded portion is closed to the right;</em>
<em>Calculate the Area:</em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em>Next;</em>
<em>Calculate the Area of the imaginary triangle (on the right)</em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em>Lastly, calculate the Area of the Shaded Part</em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em></em>
<em>Hence,</em>
<em>The area of the shaded part is 72in²</em>
Answer:
Great work!
Step-by-step explanation:
These kind of questions are calculated through Riemann Sum. You can evaluate any definite integral using the Riemann Sum. It should be in the following form:
f(x)dx on the interval [a, b], or

Now f(x) is simply y. Therefore in this example y = x^3 - 6x. We just need the sufficient amount of data to apply the Riemann Sum, including the interval [a, b] that bounds the area, and the the number of rectangles 'n' that we need to use.
Consider an easier approach to this question: (First attachment)
Graph: (Second Attachment)