We can find a formula for nth term of the given sequence as follows:
1, 5, 12, 22, 35
The 1st differences between terms:
4, 7, 10, 13
The 2nd differences :
3, 3, 3
Since it takes two rounds of differences to arrive at a constant difference between terms, the nth term will be a 2nd degree polynomial of the form:
, where c is a constant. The coefficients a, b, and the constant c can be found.
We can form the following 3 equations with 3 unknowns a, b, c:

Solving for a, b, c, we get:
a = 3/2, b = -1/2, c = 0
Therefore, the nth term of the given sequence is:

4/5ths of 100 -of=multiply- is 80 because 4/5 = .8, .8*100 = 80 milliliters
Answer:
so idc![\sqrt[n]{x} \sqrt{x} \alpha \pi x^{2} \\ \left \{ {{y=2} \atop {x=2}} \right. x_{123} \int\limits^a_b {x} \, dx \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right]](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bx%7D%20%5Csqrt%7Bx%7D%20%5Calpha%20%5Cpi%20x%5E%7B2%7D%20%5C%5C%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D%20%5Cright.%20x_%7B123%7D%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D)
443
Step-by-step explanation: its 2 6\7
Answer:
The answer is B. 13.7 inches
i hope this can help you! :)
None of these answer choices are correct. As X decreases f of x decreases without bound as X increases f of x increases without bound look to be sure you copied the question right