Answer:
- Body starts to sweat: The core body temperature exceeded the set range of 35 degrees to 41.5 degree celsius
- Breathing rate increases: Cells are not receiving adequate oxygen to produce adequate energy.
- Amount of saliva produced changes: Saliva is produced in response to pH changes in the mouth or the intake of food.
- Body starts to shiver: Core temperature dropped below the set range of 35 to 41.5 degree celsius.
Explanation:
Homeostasis:
Homeostasis is the physiological process of regulating the internal environment of the body against fluctuations in the external environment.
Homeostasis systems in the body follow the following basic scheme (from 1 to 4):
- Stimulus
- Sensor
- Control
- Effector
Various control centers in the body sense varying body conditions and in turn activate certain effector mechanisms to regulate the changing conditions.
Thermoregulation:
- Thermoregulation is the control and regulation of the optimum core temperature of the body between the range 35 to 41.5 degree celsius.
- The control center is the hypothalamus, a part of the brain that receives signals from receptors in the body and initiates the appropriate response.
- If the core temperature exceeds the optimum range, two mechanisms are initiated:
- The blood vessels towards the skin and extremities dilate, increasing the blood flow, allowing heat loss to the environment.
- Sweat glands are activated, evaporation of sweat produces a cooling effect.
- If the core temperature decreases, again, two mechanisms are activated:
- Blood vessels to the extremities constrict to prevent heat loss; those towards the core dilate to provide maximum heat to the internal organs.
- Shivering mechanisms (involuntary muscle contractions) are activated that generate heat.
Respiratory Homeostasis:
During exercise or strenuous physical activity, our cells need to produce a large amount of energy through cellular respiration. Since, cellular respiration requires oxygen, more and more oxygen needs to be supplied to the cells. A low oxygen signal detected by the hypothalamus (control center in the brain) increases the breathing rate to ensure that sufficient oxygen reaches the cells.
Oral homeostasis:
The salivary glands maintain the homeostasis of the oral cavity. Saliva is not produced in response to food but to maintain the pH of the oral cavity to protect the teeth and enamel. Saliva contains the enzyme amylase which digests carbohydrates in the mouth. Therefore, the production of saliva increases in response to smell, sight and taste of food.
Answer:
needs the identities and profiles of possible victims.
Explanation:
A database management system (DBMS) can be defined as a collection of software applications that typically enables computer users to create, store, modify, retrieve and manage data or informations in a database. Generally, it allows computer users to efficiently retrieve and manage their data with an appropriate level of security. Also, a data dictionary can be defined as a centralized collection of information on a specific data such as attributes, names, fields and definitions that are being used in a computer database system.
The database used for the identification of victims of earthquakes needs the identities and profiles of possible victims.
This ultimately implies that, the identities and profiles of possible or potential victims must have been collected and saved in a database prior to the natural disaster such as earthquake, tornado, wildfire, volcanic eruption etc. These database may be from a bank.
Answer:
Achondroplasia affects the long bones and individual has normal size, head and torso.
Explanation:
Achondroplasia dwarfism may be defined as the form of dwarfism in which the conversion of bone to cartilage is defected. This is the most common form of dwarfism.
Achondroplasia dwarfism mainly affects the long bones of an individual as there is problem in the conversion of cartilage to bone. The individuals have short arms and legs but they have normal head and torso size. The individuals has height around 4 feet.
Answer:
The mRNA strands go to the cytoplasm to meet ribosomes so protein synthesis can start.
Explanation:
In protein synthesis, the first step is to <em>synthesize messenger RNA</em>, mRNA. The coping process of the DNA section for the desired protein is called <u><em>transcription</em></u>, and it happens in the <em>nucleus</em>. After that, it occurs <em><u>translation</u></em>, when the formed <em>mRNA moves to the </em><em>cytoplasm</em> through the nucleus membrane pores. Protein synthesis is initiated in the cytoplasm when mRNA meets a free ribosome, the primary structure for protein synthesis. Ribosomes are made of <em>protein and ribosomal RNA</em> and can be found in the r<em>ough endoplasmic reticulum</em> or floating in the <em>cytosol</em>. They read the mRNA code and add the correct amino acid using <em>transference RNA</em> to build the protein. mARN has a <em>start and end codon</em> that tells where to start and stop adding amino acids. When the ribosome reaches the end codon, it means that protein synthesis is finished. The new protein is driven to the rough endoplasmic reticulum and translocated to the lumen. Once there, the protein suffers a few modifications, one of them is <em>folding</em> to become functional. Finally, protein is transported by vesicles to the Golgi complex, and from there to its final destiny.