Answer:
Mean : 95
Median : 85
Mode : 90
Part B : Impossible
Step-by-step explanation:
We can make an equation to find the mean using the first 5 history test scores.

So a 95 would be needed to have a mean of 85.
Next, the median.
First, we sort the first 5 history scores from least to greatest.
We get 75, 75, 80, 90, 95.
Since, 80 is the middle value, it will be used in the calculation of the median.
We can make an equation with this.

So a score a 85 would be needed to have a median of 82.5
Thirdly, the mode.
Since 90 is already in the set once, we can just have Maliah score another 90 to make 90 the mode (with the exception of 75 of course).
Finally, Part B.
We can use the equation we had for the first mean calculation but change 85 to 90.

So Maliah would need a score of 125 to make her mean score 90, but since the range is only from 0-100, it is impossible.
he is the best way to get a free agent and I ask 6262626
Answer:
she have to pay rs.168 at the end of two years
The system should look like this:
eh + b = 243
eh - b = 109
Answer:
The number of standard deviations from $1,158 to $1,360 is 1.68.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

The number of standard deviations from $1,158 to $1,360 is:
This is Z when X = 1360. So



The number of standard deviations from $1,158 to $1,360 is 1.68.