It is true that the product of two consecutive even integers are always one less than the square of their average.
<u>Step-by-step explanation</u>:
Let the two consecutive odd integers be 1 and 3.
- The product of 1 and 3 is (1
3)=3 - The average of 1 and 3 is (1+3)/2 =4/2 = 2
- The square of their average is (2)² = 4
∴ The product 3 is one less than the square of their average 4.
Let the two consecutive even integers be 2 and 4.
- The product of 2 and 4 is (2
4)=8 - The average of 2 and 4 is (2+4)/2 =6/2 = 3
- The square of their average is (3)² = 9
∴ The product 8 is one less than the square of their average 9.
Thus, It is true that the product of two consecutive even integers are always one less than the square of their average.
Answer:
All you need to remember is the rules
Step-by-step explanation:
Let us remember
a to the m power x a to the nth power is = a to the m+n power. (add the exponents)
And
a to the m power ÷ a to the nth power is = a to the m-n power. (subtract the exponents) So
14 to the -4 power x 14 to the 7 power= 14 to the -4+7 which is equal to 14 to the 3rd power
Answer:

Step-by-step explanation:
51 / 13 = 3.9231 = 3
51 - (13 x 3) = 12

Answer:
the answer is the first and why did you delete my answer
Step-by-step explanation: