Answer:
Number of families that should be surveyed if one wants to be 90% sure of being able to estimate the true mean PSLT within 0.5 is at least 43.
Step-by-step explanation:
We are given that one wants to estimate the mean PSLT for the population of all families in New York City with gross incomes in the range $35.000 to $40.000.
If sigma equals 2.0, we have to find that how many families should be surveyed if one wants to be 90% sure of being able to estimate the true mean PSLT within 0.5.
Here, we will use the concept of Margin of error as the statement "true mean PSLT within 0.5" represents the margin of error we want.
<u></u>
<u>SO, Margin of error formula is given by;</u>
Margin of error =
where,
= significance level = 10%
= standard deviation = 2.0
n = number of families
Now, in the z table the critical value of x at 5% (
) level of significance is 1.645.
SO, Margin of error =
0.5 =

n =
= 43.3 ≈ 43
Therefore, number of families that should be surveyed if one wants to be 90% sure of being able to estimate the true mean PSLT within 0.5 is at least 43.
20.if m <6=72, then m < 7=108
21. if m<8,then m<7=80
22.if m<110,then m<6=90
23.if m<123, then m<8=123
24.if m<142, then m<7=38
25.if m<13, then m<8=167
26.if m<170, then m<10
27.if m<26, then m <154
,
Primeiro Você IRA Dividir o c (APENAS Colocar 5 + 2 embaixo do c). Depois faça a soma 5 + 2 = 7. Então faça o mmc (mínimo múltiplo comum) entre 7 e 1(o 1 é invisível, mas continua estando embaixo do 3). Deu 7 o mmc. Transforme seus números em frações, com o denominador 7. Transforme os números em frações o 3 virá 21, pois você divide em baixo e multiplica em baixo, e o c continua normal, pois já estava em baixo de 7. Como é para descobrir uma incógnita você tira os denominadores e ficará 21 = c.
3 = c/5 + 2
3 = c/7
21/7 = c/7
21 = c
Sorry for my messy handwriting but this is the answer
Answer:

Step-by-step explanation:
We have been given an expression
. We are asked to complete the square to make a perfect square trinomial. Then, write the result as a binomial squared.
We know that a perfect square trinomial is in form
.
To convert our given expression into perfect square trinomial, we need to add and subtract
from our given expression.
We can see that value of b is 11, so we need to add and subtract
to our expression as:

Upon comparing our expression with
, we can see that
,
and
.
Upon simplifying our expression, we will get:


Therefore, our perfect square would be
.