Part A is basically asking you for the GCF (greatest common factor) between 63 and 36. To find this you find all the numbers that can be multiplied to form each number.
36:
1 * 36
2*18
3*12
4*9
6*6
63:
1*63
3*21
9*7
The GCF is 9.
Part B is asking how much the GCF can go into each type of flower.
4 rows of geraniums
7 rows of marigolds
It’s the second one it’s right
The maximum number of hours for which you can rent the scooter is: 4 hours
<h3>Cost of renting;</h3>
According to the question;
- The maximum amount you can spend for renting a motor scooter is $50
- The rental fee is $12 and the cost per hour is $9.50.
The inequality to determine the maximum number of hours you can rent the scooter is;
Solving the inequality, we have;
h <= 4hours.
Read more on cost of renting;
brainly.com/question/10563785
She will likely finish the graduation sessions in less time.
Using the binomial distribution, it is found that the probability that at least 12 of the 13 adults require eyesight correction is of 0.163 = 16.3%. Since this probability is greater than 5%, it is found that 12 is not a significantly high number of adults requiring eyesight correction.
For each person, there are only two possible outcomes, either they need correction for their eyesight, or they do not. The probability of a person needing correction is independent of any other person, hence, the binomial distribution is used to solve this question.
<h3>What is the binomial distribution formula?</h3>
The formula is:


The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
In this problem:
- A survey showed that 77% of us need correction, hence p = 0.77.
- 13 adults are randomly selected, hence n = 13.
The probability that at least 12 of them need correction for their eyesight is given by:

In which:



Then:

The probability that at least 12 of the 13 adults require eyesight correction is of 0.163 = 16.3%. Since this probability is greater than 5%, it is found that 12 is not a significantly high number of adults requiring eyesight correction.
More can be learned about the binomial distribution at brainly.com/question/24863377