Answer:
0.7061 = 70.61% probability she will have her first crash within the first 30 races she runs this season
Step-by-step explanation:
For each race, there are only two possible outcomes. Either the person has a crash, or the person does not. The probability of having a crash during a race is independent of whether there was a crash in any other race. This means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

In which
is the number of different combinations of x objects from a set of n elements, given by the following formula.

And p is the probability of X happening.
A certain performer has an independent .04 probability of a crash in each race.
This means that 
a) What is the probability she will have her first crash within the first 30 races she runs this season
This is:

When 
We have that:



0.7061 = 70.61% probability she will have her first crash within the first 30 races she runs this season
Answer:
x = 16
m<Y = 34°
Step-by-step explanation:
∆XYZ is an isosceles ∆. An isosceles ∆ has two equal sides, as well as the bases of the isosceles triangle are congruent. In this case, therefore:
<X = <Z
(6x - 23)° = (4x + 9)
Solve for x
6x - 23 = 4x + 9
Collect like terms
6x - 4x = 23 + 9
2x = 32
Divide both sides by 2
x = 16
m<Y = 180° - (m<X + m<Z) (sum of ∆)
m<Y = 180 - ((6x - 23) + (4x + 9))
Plug in the value of x
m<Y = 180 - ((6(16) - 23) + (4(16) + 9))
m<Y = 180 - (73 + 73)
m<Y = 34°
Answer:
Step-by-step explanation:
3x^2 + 2x^2 - 5x + 7x + 6 - 9
5x^2 + 2x - 3