Mean 60 - 2(0.9) = 58.2
58.2 is 2 standard deviations from the mean.
All you have to do is multiply 84 by 25%
And that's your answer.
I hope this helped
<h3>
Answer:</h3>
(x, y) = (7, -5)
<h3>
Step-by-step explanation:</h3>
It generally works well to follow directions.
The matrix of coefficients is ...
![\left[\begin{array}{cc}2&4\\-5&3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%264%5C%5C-5%263%5Cend%7Barray%7D%5Cright%5D)
Its inverse is the transpose of the cofactor matrix, divided by the determinant. That is ...
![\dfrac{1}{26}\left[\begin{array}{ccc}3&-4\\5&2\end{array}\right]](https://tex.z-dn.net/?f=%5Cdfrac%7B1%7D%7B26%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%26-4%5C%5C5%262%5Cend%7Barray%7D%5Cright%5D)
So the solution is the product of this and the vector of constants [-6, -50]. That product is ...
... x = (3·(-6) +(-4)(-50))/26 = 7
... y = (5·(-6) +2·(-50))/26 = -5
The solution using inverse matrices is ...
... (x, y) = (7, -5)
ANSWER: no
EXPLAIN: because a proportional relationship graph would have a straight line running through the origin