Follow pemdas. Evaluate operations in parentheses first.
2*(-7)+14-4
Then multiply
-14+14-4
Then add and subtract from left to right
-14+14=0
0-4=-4
Final answer: -4
Step-by-step explanation:
![M=\left[\begin{array}{ccc}1&-1/f_2\\0&1\end{array}\right] \left[\begin{array}{ccc}1&0\\d&0\end{array}\right] \left[\begin{array}{ccc}1&-1/f_1\\0&1\end{array}\right]\\=\left[\begin{array}{ccc}1&-1/f_2\\0&1\end{array}\right]\left[\begin{array}{ccc}1&-1/f_1\\d&-d/f_1\end{array}\right]\\=\left[\begin{array}{ccc}1-d/f_2&-1/f_1+d/f_1f_2\\d&-d/f_1\end{array}\right]\\\\|M|=[-d/f_1+d^2/f_1f_2]-[-d/f_1+d^2/f_1f_2]=0\\\\-1/f=M_{12}=-1/f_1+d/f_1f_2\\1/f=M_{12}=+1/f_1-d/f_1f_2\\](https://tex.z-dn.net/?f=M%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26-1%2Ff_2%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%5C%5Cd%260%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26-1%2Ff_1%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%5C%5C%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26-1%2Ff_2%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26-1%2Ff_1%5C%5Cd%26-d%2Ff_1%5Cend%7Barray%7D%5Cright%5D%5C%5C%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1-d%2Ff_2%26-1%2Ff_1%2Bd%2Ff_1f_2%5C%5Cd%26-d%2Ff_1%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%7CM%7C%3D%5B-d%2Ff_1%2Bd%5E2%2Ff_1f_2%5D-%5B-d%2Ff_1%2Bd%5E2%2Ff_1f_2%5D%3D0%5C%5C%5C%5C-1%2Ff%3DM_%7B12%7D%3D-1%2Ff_1%2Bd%2Ff_1f_2%5C%5C1%2Ff%3DM_%7B12%7D%3D%2B1%2Ff_1-d%2Ff_1f_2%5C%5C)
<h3>
<u>Answer:</u></h3>

<h3>
<u>Step-by-step explanation:</u></h3>
Given function to us is :-
And we , need to write the function a a product of linear factor by grouping or using the x method or a combination of both . So let's factorise this ,
I have also attached the graph of x²-9.
<h3>
<u>Hence </u><u>option</u><u> </u><u>A</u><u> </u><u>is</u><u> </u><u>corr</u><u>ect</u><u> </u><u>.</u></h3>
Answer:
X=15
Step-by-step explanation:
Ignore the increase for equasion. This is factored in but irellevent. Orignal x value is 13, but increases to 15, and orignal x value is not needed for this equasion. (its there to confuse you)
L+L+W+W=66.
(w+3) +(w+3) +w +w = 66
(4xw) + 3 +3= 66
4 x w = 66 -3 -3
4 x w =60
60/4= 15.
L= 15+ 3 =18
W = 15.
W + W + L + L
15 + 15 + 18 +18 =66