Answer:
1
Step-by-step explanation:
identify two points on the graph:
1. (0, 4)
2. (-2, 2)
use slope formula: (y² - y¹) / (x² - x¹)
1. (2 - 4) / (-2 - 0) = -2 / -2 = 1
slope = 1
Answer:
17
Step-by-step explanation:
8 + h^2
Let h = 3
8 + 3^2
We find the value of 3^2 first using PEMDAS
8 + 9
Then add
17
The result is 17
The line of reflection is what the graph flips over. You can find the line with two points, and a point on the reflection line is the midpoint of a point and the corresponding point in the after-image.
The first one reflects over the y-axis, or x=0. One point is (-2, 1) and its corresponding point is (2, -1). The midpoint is found by the average of the two coordinates, which is (0,0). Pick another pair of points and find the midpoint which you should get (x,0).
You have two points (0,0) and (x,0) and they form a line, which is the y-axis, or x=0.
The line of reflection for the 1st one is x=0 (y-axis).
The one year-plan would have a credit, so it would have a positive sign. In the monthly plan, there is a high risk of being late in paying the bills. That's why a fine of $10 is given for every month that you are late. If you are not time conscious and you end up being late every month, it would give you a negative balance.
Answer:
(a)123 km/hr
(b)39 degrees
Step-by-step explanation:
Plane X with an average speed of 50km/hr travels for 2 hours from P (Kano Airport) to point Q in the diagram.
Distance = Speed X Time
Therefore: PQ =50km/hr X 2 hr =100 km
It moves from Point Q at 9.00 am and arrives at the airstrip A by 11.30am.
Distance, QA=50km/hr X 2.5 hr =125 km
Using alternate angles in the diagram:

(a)First, we calculate the distance traveled, PA by plane Y.
Using Cosine rule

SInce aeroplane Y leaves kano airport at 10.00am and arrives at 11.30am
Time taken =1.5 hour
Therefore:
Average Speed of Y

(b)Flight Direction of Y
Using Law of Sines
![\dfrac{p}{\sin P} =\dfrac{q}{\sin Q}\\\dfrac{125}{\sin P} =\dfrac{184.87}{\sin 110}\\123 \times \sin P=125 \times \sin 110\\\sin P=(125 \times \sin 110) \div 184.87\\P=\arcsin [(125 \times \sin 110) \div 184.87]\\P=39^\circ $ (to the nearest degree)](https://tex.z-dn.net/?f=%5Cdfrac%7Bp%7D%7B%5Csin%20P%7D%20%3D%5Cdfrac%7Bq%7D%7B%5Csin%20Q%7D%5C%5C%5Cdfrac%7B125%7D%7B%5Csin%20P%7D%20%3D%5Cdfrac%7B184.87%7D%7B%5Csin%20110%7D%5C%5C123%20%5Ctimes%20%5Csin%20P%3D125%20%5Ctimes%20%5Csin%20110%5C%5C%5Csin%20P%3D%28125%20%5Ctimes%20%5Csin%20110%29%20%5Cdiv%20184.87%5C%5CP%3D%5Carcsin%20%5B%28125%20%5Ctimes%20%5Csin%20110%29%20%5Cdiv%20184.87%5D%5C%5CP%3D39%5E%5Ccirc%20%24%20%28to%20the%20nearest%20degree%29)
The direction of flight Y to the nearest degree is 39 degrees.