The given function f(x) = |x + 3| has both an absolute maximum and an absolute minimum.
What do you mean by absolute maximum and minimum ?
A function has largest possible value at an absolute maximum point, whereas its lowest possible value can be found at an absolute minimum point.
It is given that function is f(x) = |x + 3|.
We know that to check if function is absolute minimum or absolute maximum by putting the value of modulus either equal to zero or equal to or less than zero and simplify.
So , if we put |x + 3| = 0 , then :
± x + 3 = 0
±x = -3
So , we can have two values of x which are either -3 or 3.
The value 3 will be absolute maximum and -3 will be absolute minimum.
Therefore , the given function f(x) = |x + 3| has both an absolute maximum and an absolute minimum.
Learn more about absolute maximum and minimum here :
brainly.com/question/17438358
#SPJ1
<h3>
Answer:</h3>
y = x - 5
<h3>
Step-by-step explanation:</h3>
If 5 is being subtracted from x, then it would look like x-5.
Since x-5 represents 5 being subtracted from x, y=x-5 is the correct answer because the other options aren't representing 5 subtracted from x.
Let us cross multiply.
5/9=10/x
9 x 10= 5x
90=5x
90 <u />÷ 5= 5x <span>÷ 5
18=x
So, the answer is 18. I hope this helped you, since I just learned cross multiplication last week.</span>
Answer: 180
Angles in a linear pair are always supplementary. This means they form a straight angle or a straight line.