1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marusya05 [52]
3 years ago
11

The hospital is 3.1 miles west of the fire station. What is the length of straight line between the school and the hospital? Rou

nd to the nearest tenth. Enter your answer in the box.
Mathematics
1 answer:
kenny6666 [7]3 years ago
5 0

Answer:

2.1 miles

Step-by-step explanation:

You might be interested in
What's two thirds of a straight line?
Komok [63]
Well if the straight line is equal to 1 then your answer is 2/3 but if the straight line is not equal to 1 you need to know what it is equal to or you could use the equation y = (2/3)x
"x" would be the length of the straight line and "y" would be two-thirds of it
6 0
3 years ago
Find the values of the variables for each quadrilateral.
kondaur [170]
Correct answer is the 3rd one.
8 0
2 years ago
Solve the system of equations:<br> 5x + 3y = 23<br> 3y = 15x - 21
Rama09 [41]

Answer:

x=11/5 and y=4

Explanation:

4 0
2 years ago
Y=-1/2x+1 what is the slope
klio [65]
The slope is -1/2. When it’s in the equation like that, the slope is always the number that has the letter X next to it.
6 0
3 years ago
use the general slicing method to find the volume of The solid whose base is the triangle with vertices (0 comma 0 )​, (15 comma
lyudmila [28]

Answer:

volume V of the solid

\boxed{V=\displaystyle\frac{125\pi}{12}}

Step-by-step explanation:

The situation is depicted in the picture attached

(see picture)

First, we divide the segment [0, 5] on the X-axis into n equal parts of length 5/n each

[0, 5/n], [5/n, 2(5/n)], [2(5/n), 3(5/n)],..., [(n-1)(5/n), 5]

Now, we slice our solid into n slices.  

Each slice is a quarter of cylinder 5/n thick and has a radius of  

-k(5/n) + 5  for each k = 1,2,..., n (see picture)

So the volume of each slice is  

\displaystyle\frac{\pi(-k(5/n) + 5 )^2*(5/n)}{4}

for k=1,2,..., n

We then add up the volumes of all these slices

\displaystyle\frac{\pi(-(5/n) + 5 )^2*(5/n)}{4}+\displaystyle\frac{\pi(-2(5/n) + 5 )^2*(5/n)}{4}+...+\displaystyle\frac{\pi(-n(5/n) + 5 )^2*(5/n)}{4}

Notice that the last term of the sum vanishes. After making up the expression a little, we get

\displaystyle\frac{5\pi}{4n}\left[(-(5/n)+5)^2+(-2(5/n)+5)^2+...+(-(n-1)(5/n)+5)^2\right]=\\\\\displaystyle\frac{5\pi}{4n}\displaystyle\sum_{k=1}^{n-1}(-k(5/n)+5)^2

But

\displaystyle\frac{5\pi}{4n}\displaystyle\sum_{k=1}^{n-1}(-k(5/n)+5)^2=\displaystyle\frac{5\pi}{4n}\displaystyle\sum_{k=1}^{n-1}((5/n)^2k^2-(50/n)k+25)=\\\\\displaystyle\frac{5\pi}{4n}\left((5/n)^2\displaystyle\sum_{k=1}^{n-1}k^2-(50/n)\displaystyle\sum_{k=1}^{n-1}k+25(n-1)\right)

we also know that

\displaystyle\sum_{k=1}^{n-1}k^2=\displaystyle\frac{n(n-1)(2n-1)}{6}

and

\displaystyle\sum_{k=1}^{n-1}k=\displaystyle\frac{n(n-1)}{2}

so we have, after replacing and simplifying, the sum of the slices equals

\displaystyle\frac{5\pi}{4n}\left((5/n)^2\displaystyle\sum_{k=1}^{n-1}k^2-(50/n)\displaystyle\sum_{k=1}^{n-1}k+25(n-1)\right)=\\\\=\displaystyle\frac{5\pi}{4n}\left(\displaystyle\frac{25}{n^2}.\displaystyle\frac{n(n-1)(2n-1)}{6}-\displaystyle\frac{50}{n}.\displaystyle\frac{n(n-1)}{2}+25(n-1)\right)=\\\\=\displaystyle\frac{125\pi}{24}.\displaystyle\frac{n(n-1)(2n-1)}{n^3}

Now we take the limit when n tends to infinite (the slices get thinner and thinner)

\displaystyle\frac{125\pi}{24}\displaystyle\lim_{n \rightarrow \infty}\displaystyle\frac{n(n-1)(2n-1)}{n^3}=\displaystyle\frac{125\pi}{24}\displaystyle\lim_{n \rightarrow \infty}(2-3/n+1/n^2)=\\\\=\displaystyle\frac{125\pi}{24}.2=\displaystyle\frac{125\pi}{12}

and the volume V of our solid is

\boxed{V=\displaystyle\frac{125\pi}{12}}

3 0
3 years ago
Other questions:
  • How to slove step by step
    6·1 answer
  • Find the area of the figure.( sides meet at right angles.)
    11·1 answer
  • How to find surface area​
    11·2 answers
  • Solve 2x2 + 20x = −38. (1 point)
    12·2 answers
  • Solve for x if 12x - 1 = 143
    10·2 answers
  • Halpppppppppppp i don't understand this... &lt;:
    13·1 answer
  • Find the quotient.<br> 3/8 divided by 8
    15·1 answer
  • What is the value of y?
    13·1 answer
  • 3100 times 43 how much is this
    14·2 answers
  • Which value of x makes the equation -2(1-4x)=3x+8 true?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!