Answer:
3 times
Step-by-step explanation:
She would have to weigh the fake coins and another bag of real coins to spot a difference, and then she would need to check another bag to see which was correct. Maybe thats right.
Integrate both sides with respect to <em>t</em> :
∫ d<em>y</em>/d<em>t</em> d<em>t</em> = ∫ -12<em>t</em> ² d<em>t</em>
<em>y(t)</em> = -4<em>t</em> ³ + <em>C</em>
Use the initial condition to solve for <em>C</em> :
5 = -4•0³+ <em>C</em>
<em>C</em> = 5
So
<em>y(t)</em> = -4<em>t</em> ³ + 5
and the answer is D.
Alternatively, you can directly apply the fundamental theorem of calculus:



Answer:
The coordinates of C is (-8,1)
Step-by-step explanation:
Looking at the attached image, you'd see that, AB is 1 and BC is 1, that's because we are told that ratio of AB to AC is 1:2 meaning, AC is 2 and AB is 1. Therefore for that ratio to be satisfied BC has to be 1 so that AC would be 2.
Now let's assume the coordinates of C is
.
To get it's coordinates, we use the section formula:

Where (m,n) is the (AB, BC)
Therefore we have

This gives:

and 
From there x = -8 and y = 1
Therefore the coordinates of C is (-8, 1).
Answer:
See proof below
Step-by-step explanation:
show that
sinx/1+cosx=tanx/2
From LHS
sinx/1+cosx
According to half angle
sinx = 2sinx/2 cosx/2
cosx = cos²x/2 - sin²x/2
cosx = cos²x/2 - (1- cos²x/2)
cosx = 2cos²x/2 - 1
cos x + 1 = 2cos²x/2
Substitute into the expression;
sinx/1+cosx
= (2sinx/2 cosx/2)/2cos²x/2
= sinx.2/cos x/2
Since tan x = sinx/cosx
Hence sinx/2/cos x/2 = tan x/2 (RHS)
This shows that sinx/1+cosx=tanx/2