Answer: 1st,2nd, and 4th one are correct.
Step-by-step explanation:
Answer:
cosФ =
, sinФ =
, tanФ = -8, secФ =
, cscФ =
, cotФ = 
Step-by-step explanation:
If a point (x, y) lies on the terminal side of angle Ф in standard position, then the six trigonometry functions are:
- cosФ =

- sinФ =

- tanФ =

- secФ =

- cscФ =

- cotФ =

- Where r =
(the length of the terminal side from the origin to point (x, y)
- You should find the quadrant of (x, y) to adjust the sign of each function
∵ Point (1, -8) lies on the terminal side of angle Ф in standard position
∵ x is positive and y is negative
→ That means the point lies on the 4th quadrant
∴ Angle Ф is on the 4th quadrant
∵ In the 4th quadrant cosФ and secФ only have positive values
∴ sinФ, secФ, tanФ, and cotФ have negative values
→ let us find r
∵ r = 
∵ x = 1 and y = -8
∴ r = 
→ Use the rules above to find the six trigonometric functions of Ф
∵ cosФ = 
∴ cosФ =
∵ sinФ = 
∴ sinФ = 
∵ tanФ = 
∴ tanФ =
= -8
∵ secФ = 
∴ secФ =
= 
∵ cscФ = 
∴ cscФ = 
∵ cotФ = 
∴ cotФ =
Answer:
z = 15
Step-by-step explanation:
The sum S of the interior angles of a regular polygon is given by the formula
S = (n-2) x 180 where n is the number sides
Here n = 9
So S = (9-2) x 180 = 7 x 180 = 1,260
There are 9 interior angles and each angle is (5z + 65)
So the sum of all 9 interior angles = 9 (5z + 65)
= 45z + 585
Set these equal to each other and solve for z
45z + 585 = 1260
45z = 675
z = 675/45 = 15
H'(x) = 2f'(x)
h'(1) = 2*f'(1) = 2*4
h'(1) = 8
Answer:
$1,109.62
Step-by-step explanation:
Let's first compute the <em>future value FV.</em>
In order to see the rule of formation, let's see the value (in $) for the first few years
<u>End of year 0</u>
1,000
<u>End of year 1(capital + interest + new deposit)</u>
1,000*(1.09)+10
<u>End of year 2 (capital + interest + new deposit)</u>
(1,000*(1.09)+10)*1.09 +10 =

<u>End of year 3 (capital + interest + new deposit)</u>

and we can see that at the end of year 50, the future value is

The sum

is the <em>sum of a geometric sequence </em>with common ratio 1.09 and is equal to

and the future value is then

The <em>present value PV</em> is

rounded to the nearest hundredth.