1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Minchanka [31]
2 years ago
8

M∠A = 142º I need it

Mathematics
1 answer:
Nonamiya [84]2 years ago
7 0

Answer:

38

Step-by-step explanation:

You might be interested in
The surface areas of the two solids shown above are equal.<br> A. True<br> B. False
Hunter-Best [27]
The answer is false.
3 0
2 years ago
Read 2 more answers
Help! Please!
fomenos

Answer:

is the board game to BOARD for Neal so you have 1.54

Step-by-step explanation:

its ligit 5.5

6 0
3 years ago
Which of the following constants can be added to x2 + x to form a perfect square trinomial?
solmaris [256]

The constant should be added to form a perfect square trinomial will be 1/4. Then the correct option is D.

<h3>What is a quadratic equation?</h3>

It's a polynomial with a value of zero. There exist polynomials of variable power 2, 1, and 0 terms. A quadratic equation is an equation with one statement in which the degree of the parameter is a maximum of 2.

The expression is x² + x.

Then the constant should be added to form a perfect square trinomial.

Then the constant will be

The square of the half of the coefficient of the variable x is to be added to make a perfect square.

Then the constant will be 1/4.

Then the perfect square will be

\rm \rightarrow x^2 + x + \dfrac{1}{4}\\\\\\\rightarrow x^2 + 2 \times \dfrac{1}{2} x + \left (\dfrac{1}{2} \right )^2\\\\\\\rightarrow \left (x + \dfrac{1}{2} \right)^2

More about the quadratic equation link is given below.

brainly.com/question/2263981

#SPJ1

4 0
2 years ago
Let z=3+i, <br>then find<br> a. Z²<br>b. |Z| <br>c.<img src="https://tex.z-dn.net/?f=%5Csqrt%7BZ%7D" id="TexFormula1" title="\sq
zysi [14]

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

3 0
3 years ago
Read 2 more answers
How do you simplify the expression 3g-a+11g-21
ladessa [460]
I hope this helps you 3g+11g-a-22 14g-a-21
6 0
3 years ago
Read 2 more answers
Other questions:
  • Jamie was asked to make r the subject of the formula p=10(q-3r)/r Complete his answer
    9·2 answers
  • Johnny can read 10 pages of a book in 15 minutes.
    12·1 answer
  • Q7 Q26.) Find the quotient of the complex numbers and leave your answer in polar form.
    9·2 answers
  • X^+5x+8=0<br> What is the answer to this question
    15·1 answer
  • write the equation of the line that passes through (1, 3) and has a slope of 2 in point-slope form. a. y – 1 = 2(x – 3) b. y – 3
    11·1 answer
  • PLEASE HELP ASAP WITHIN THE HOUR
    7·1 answer
  • Jane buys a pack of 6 towels for 15.60 .
    12·1 answer
  • 150 copies will cost $15.00. What is the Unit Rate?
    7·1 answer
  • Calculate the area of each figure.
    7·1 answer
  • Add -73 + 28.<br> 0-91<br> 0-55<br> 0-45
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!