What is the upper quartile, Q3, of the following data set? 54, 53, 46, 60, 62, 70, 43, 67, 48, 65, 55, 38, 52, 56, 41
scZoUnD [109]
The original data set is
{<span>54, 53, 46, 60, 62, 70, 43, 67, 48, 65, 55, 38, 52, 56, 41}
Sort the data values from smallest to largest to get
</span><span>{38, 41, 43, 46, 48, 52, 53, 54, 55, 56, 60, 62, 65, 67, 70}
</span>
Now find the middle most value. This is the value in the 8th slot. The first 7 values are below the median. The 8th value is the median itself. The next 7 values are above the median.
The value in the 8th slot is 54, so this is the median
Divide the sorted data set into two lists. I'll call them L and U
L = {<span>38, 41, 43, 46, 48, 52, 53}
U = {</span><span>55, 56, 60, 62, 65, 67, 70}
they each have 7 items. The list L is the lower half of the sorted data and U is the upper half. The split happens at the original median (54).
Q3 will be equal to the median of the list U
The median of U = </span>{<span>55, 56, 60, 62, 65, 67, 70} is 62 since it's the middle most value.
Therefore, Q3 = 62
Answer: 62</span>
Answer:
100000
Step-by-step explanation:
10x10x10x10x10= 100000
Answer:
lw +
× π ×
⇒ Answer D is correct
Step-by-step explanation:
First, let us find the area of the semi-circle.
Area =
× π × r²
<u>Given that,</u>
diameter of the semi-circle is ⇒ <em>l</em>
∴ radius ⇒ <em>l / 2</em>
<u>Let us find it now.</u>
Area =
× π × r²
Area =
× π × 
<u> </u>
Secondly, let us find the area of the rectangle.
Area = length × width
<u>Given that,</u>
length ⇒ <em>l</em>
width ⇒ w
<u>Let us find it now.</u>
Area = length × width
Area = l ×w
Area = lw
<u> </u>
And now let us <u>find the total area.</u>
Total area = Area of the rectangle + Area of the semi - circle
Tota area = lw +
× π × 