The transformation will lie in Quadrant III
The constant of proportionality if y varies inversely as the fourth power of x and when x=3, y=1 is k = 3^¼
<h3>Inverse variation</h3>
y = k ÷ x^¼
where,
- Constant of proportionality = k
When x = 3, y = 1
y = k ÷ x^¼
1 = k ÷ 3^¼
1 = k / 3^¼
1 × 3^¼ = k
k = 3^¼
Therefore, the constant of proportionality if y varies inversely as the fourth power of x and when x=3, y=1 is k = 3¼
Learn more about inverse variation:
brainly.com/question/10252139
#SPJ1
C = sqrt(e/m)
You can get this by first dividing away the m and then taking the square root of both sides.