Answer:

Step-by-step explanation:
Given that:

where;
the top vertex = (0,0,1) and the base vertices at (0, 0, 0), (1, 0, 0), (0, 1, 0), and (1, 1, 0)
As such , the region of the bounds of the pyramid is: (0 ≤ x ≤ 1-z, 0 ≤ y ≤ 1-z, 0 ≤ z ≤ 1)


![\iiint_W (x^2+y^2) \ dx \ dy \ dz = \int ^1_0 \ dz \ ( \dfrac{(1-z)^3}{3} \ y + \dfrac {(1-z)y^3)}{3}] ^{1-x}_{0}](https://tex.z-dn.net/?f=%5Ciiint_W%20%28x%5E2%2By%5E2%29%20%5C%20dx%20%5C%20dy%20%5C%20dz%20%3D%20%5Cint%20%5E1_0%20%20%5C%20dz%20%5C%20%20%28%20%5Cdfrac%7B%281-z%29%5E3%7D%7B3%7D%20%5C%20y%20%2B%20%5Cdfrac%20%7B%281-z%29y%5E3%29%7D%7B3%7D%5D%20%5E%7B1-x%7D_%7B0%7D)




Answer:
D
Step-by-step explanation:
Answer:
yes
Step-by-step explanation:
To determine if the point lies on the line substitute the coordinates into the left side of the equation and if equal to the right side then the point lies on the line
- 3 + (4 × 4) = - 3 + 16 = 13 = right side
Hence (- 3, 4) lies on the line x + 4y = 13