Answer:
28 i think.
Step-by-step explanation:
A week has 7 days so 7×2 is 14 and thats the same for the other week. Add those together and you'll get 28.
There are 91 such ways in whih the volunteers can be assigned if two of them cannot be assigned from 14 volunteers.
Given that a school dance committee has 14 volunteers and each dance requires 3 volunteers at the door, 5 volunteers on the floor and 6 on floaters.
We are required to find the number of ways in which the volunteers can be assigned.
Combinations means finding the ways in which the things can be choosed to make a new thing or to do something else.
n
=n!/r!(n-r)!
Number of ways in which the volunteers can be assigned is equal to the following:
Since 2 have not been assigned so left over volunteers are 14-2=12 volunteers.
Number of ways =14
=14!/12!(14-12)!
=14!/12!*2!
=14*13/2*1
=91 ways
Hence there are 91 such ways in whih the volunteers can be assigned if two of them cannot be assigned.
Learn more about combinations at brainly.com/question/11732255
#SPJ1
<span>C. No, because although the results differ among the four surveys, the sample method used for all was the same. Luc RANDOMLY selects 40 students in every survey. Random selection in surveys do not create bias and the results are highly credible. This is because there are no preconceived notions or factors that affect the responses of people being surveyed.</span>
Answer:

Step-by-step explanation:
If
, then
. It follows that
![\begin{aligned} \\\frac{g(x+h)-g(x)}{h} &= \frac{1}{h} \cdot [g(x+h) - g(x)] \\&= \frac{1}{h} \left( \frac{1}{x+h} - \frac{1}{x} \right)\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%20%5C%5C%5Cfrac%7Bg%28x%2Bh%29-g%28x%29%7D%7Bh%7D%20%26%3D%20%5Cfrac%7B1%7D%7Bh%7D%20%5Ccdot%20%5Bg%28x%2Bh%29%20-%20g%28x%29%5D%20%5C%5C%26%3D%20%5Cfrac%7B1%7D%7Bh%7D%20%5Cleft%28%20%5Cfrac%7B1%7D%7Bx%2Bh%7D%20-%20%5Cfrac%7B1%7D%7Bx%7D%20%5Cright%29%5Cend%7Baligned%7D)
Technically we are done, but some more simplification can be made. We can get a common denominator between 1/(x+h) and 1/x.

Now we can cancel the h in the numerator and denominator under the assumption that h is not 0.
