I'm assuming

(a) <em>f(x)</em> is a valid probability density function if its integral over the support is 1:

Compute the integral:

So we have
<em>k</em> / 6 = 1 → <em>k</em> = 6
(b) By definition of conditional probability,
P(<em>Y</em> ≤ 0.4 | <em>Y</em> ≤ 0.8) = P(<em>Y</em> ≤ 0.4 and <em>Y</em> ≤ 0.8) / P(<em>Y</em> ≤ 0.8)
P(<em>Y</em> ≤ 0.4 | <em>Y</em> ≤ 0.8) = P(<em>Y</em> ≤ 0.4) / P(<em>Y</em> ≤ 0.8)
It makes sense to derive the cumulative distribution function (CDF) for the rest of the problem, since <em>F(y)</em> = P(<em>Y</em> ≤ <em>y</em>).
We have

Then
P(<em>Y</em> ≤ 0.4) = <em>F</em> (0.4) = 0.352
P(<em>Y</em> ≤ 0.8) = <em>F</em> (0.8) = 0.896
and so
P(<em>Y</em> ≤ 0.4 | <em>Y</em> ≤ 0.8) = 0.352 / 0.896 ≈ 0.393
(c) The 0.95 quantile is the value <em>φ</em> such that
P(<em>Y</em> ≤ <em>φ</em>) = 0.95
In terms of the integral definition of the CDF, we have solve for <em>φ</em> such that

We have

which reduces to the cubic
3<em>φ</em>² - 2<em>φ</em>³ = 0.95
Use a calculator to solve this and find that <em>φ</em> ≈ 0.865.
Answer:

Step-by-step explanation:
Given:
Rate of change of radius of cylinder:

(This is increasing rate so positive)
Rate of change of height of cylinder:

(This is decreasing rate so negative)
To find:
Rate of change of volume when r = 20 inches and h = 16 inches.
Solution:
First of all, let us have a look at the formula for Volume:

Differentiating it w.r.to 't':

Let us have a look at the formula:


Applying the two formula for the above differentiation:

Now, putting the values:

So, the answer is: 
Answer: 1
Step-by-step explanation: can only be split evenly by one line.
Answer:
The answer is 23.86 but ya gotta round up to 23.4 so its A
Answer:
1. 3,085,003
2. 114,000,726
3. 7,098,000
4. 882,108
5. 500,006,719
Step-by-step explanation: