♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️
a )


Two solutions.
_________________________________
b )


One solution .
_________________________________
c )


_________________________________
d )


One solution.
_________________________________
e )



Two solutions.
_________________________________
f )


Two solutions .
♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️
。☆✼★ ━━━━━━━━━━━━━━ ☾
400/5 = 80
There are 80 glass bottles
Have A Nice Day ❤
Stay Brainly! ヅ
- Ally ✧
。☆✼★ ━━━━━━━━━━━━━━ ☾
If you multiply the top equation by -2 you get:
-4x -14y = 14 => -4x = 14+14y
now you can plug in the -4x into the second equation:
14+14y - 3y = -19 => 11y = -33 => y=-3
Fill in y=-3 in either equation to find x:
2x - 21 = -7 => 2x = 14 => x=7
So your ordered pair is (7,-3)
The answer is B. Have a nice day
Complete Question:
A population proportion is 0.4. A sample of size 200 will be taken and the sample proportion p will be used to estimate the population proportion. Use z- table Round your answers to four decimal places. Do not round intermediate calculations. a. What is the probability that the sample proportion will be within ±0.03 of the population proportion? b. What is the probability that the sample proportion will be within ±0.08 of the population proportion?
Answer:
A) 0.61351
Step-by-step explanation:
Sample proportion = 0.4
Sample population = 200
A.) proprobaility that sample proportion 'p' is within ±0.03 of population proportion
Statistically:
P(0.4-0.03<p<0.4+0.03)
P[((0.4-0.03)-0.4)/√((0.4)(.6))/200 < z < ((0.4+0.03)-0.4)/√((0.4)(.6))/200
P[-0.03/0.0346410 < z < 0.03/0.0346410
P(−0.866025 < z < 0.866025)
P(z < - 0.8660) - P(z < 0.8660)
0.80675 - 0.19325
= 0.61351
B) proprobaility that sample proportion 'p' is within ±0.08 of population proportion
Statistically:
P(0.4-0.08<p<0.4+0.08)
P[((0.4-0.08)-0.4)/√((0.4)(.6))/200 < z < ((0.4+0.08)-0.4)/√((0.4)(.6))/200
P[-0.08/0.0346410 < z < 0.08/0.0346410
P(−2.3094 < z < 2.3094)
P(z < -2.3094 ) - P(z < 2.3094)
0.98954 - 0.010461
= 0.97908