Answer:
just graph the line: y=4x-12
Step-by-step explanation:
 
        
             
        
        
        
Split up the interval [0, 3] into 3 equally spaced subintervals of length  . So we have the partition
. So we have the partition
[0, 1] U [1, 2] U [2, 3]
The left endpoint of the  -th subinterval is
-th subinterval is

where  .
.
Then the area is given by the definite integral and approximated by the left-hand Riemann sum

 
        
             
        
        
        
Answer:
(1,-1)
Step-by-step explanation:
 
        
             
        
        
        
So is doubling, first off, meaning, if the current amount say P, then when it doubles is 2P, or double that, or P + P, so the rate of growth is 100%, since it's doubling.
and is doing it every 9 hour cycle, thus
![\bf \textit{Periodic/Cyclical Exponential Growth}\\\\
A=P(1 + r)^{\frac{t}{c}}\qquad 
\begin{cases}
A=\textit{accumulated amount}\\
P=\textit{initial amount}\to &650\\
r=rate\to 100\%\to \frac{100}{100}\to &1.00\\
t=\textit{elapsed time}\to &10\\
c=period\to &9
\end{cases}
\\\\\\
A=650(1 + 1)^{\frac{10}{9}}\implies A=650(2)^{\frac{10}{9}}\implies A=650\sqrt[9]{2^{10}}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7BPeriodic%2FCyclical%20Exponential%20Growth%7D%5C%5C%5C%5C%0AA%3DP%281%20%2B%20r%29%5E%7B%5Cfrac%7Bt%7D%7Bc%7D%7D%5Cqquad%20%0A%5Cbegin%7Bcases%7D%0AA%3D%5Ctextit%7Baccumulated%20amount%7D%5C%5C%0AP%3D%5Ctextit%7Binitial%20amount%7D%5Cto%20%26650%5C%5C%0Ar%3Drate%5Cto%20100%5C%25%5Cto%20%5Cfrac%7B100%7D%7B100%7D%5Cto%20%261.00%5C%5C%0At%3D%5Ctextit%7Belapsed%20time%7D%5Cto%20%2610%5C%5C%0Ac%3Dperiod%5Cto%20%269%0A%5Cend%7Bcases%7D%0A%5C%5C%5C%5C%5C%5C%0AA%3D650%281%20%2B%201%29%5E%7B%5Cfrac%7B10%7D%7B9%7D%7D%5Cimplies%20A%3D650%282%29%5E%7B%5Cfrac%7B10%7D%7B9%7D%7D%5Cimplies%20A%3D650%5Csqrt%5B9%5D%7B2%5E%7B10%7D%7D)