1/5 five being the denominator, because in math you must always simplify
Answer:
4 i believe
Step-by-step explanation:
Im so sorry if this is wrong and for being late
Answer:
Two angles and the non-included side of one triangle are congruent to the corresponding parts of another triangle. Which congruence theorem can be used to prove that the triangles are congruent? Two sides and the included angle of one triangle are congruent to the corresponding parts of another triangle.
2.8.1

By definition of the derivative,

We have

and

Combine these fractions into one with a common denominator:

Rationalize the numerator by multiplying uniformly by the conjugate of the numerator, and simplify the result:

Now divide this by <em>h</em> and take the limit as <em>h</em> approaches 0 :

3.1.1.
![f(x) = 4x^5 - \dfrac1{4x^2} + \sqrt[3]{x} - \pi^2 + 10e^3](https://tex.z-dn.net/?f=f%28x%29%20%3D%204x%5E5%20-%20%5Cdfrac1%7B4x%5E2%7D%20%2B%20%5Csqrt%5B3%5D%7Bx%7D%20-%20%5Cpi%5E2%20%2B%2010e%5E3)
Differentiate one term at a time:
• power rule


![\left(\sqrt[3]{x}\right)' = \left(x^{1/3}\right)' = \dfrac13 x^{-2/3} = \dfrac1{3x^{2/3}}](https://tex.z-dn.net/?f=%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%5Cright%29%27%20%3D%20%5Cleft%28x%5E%7B1%2F3%7D%5Cright%29%27%20%3D%20%5Cdfrac13%20x%5E%7B-2%2F3%7D%20%3D%20%5Cdfrac1%7B3x%5E%7B2%2F3%7D%7D)
The last two terms are constant, so their derivatives are both zero.
So you end up with
