Answer:
5 terms
to the fourth degree
leading coeff of 1
3 turning points
end behavior (when x -> inf, y -> inf. When x -> - inf, y -> -inf)
x intercepts are (0,-4) (0,-2) (0,1) (0,3)
Relative min: (-3.193, -25) (2.193, 25)
Relative max: (-0.5, 27.563)
Step-by-step explanation:
The terms can be counted, seperated by the + and - in the equation given.
The highest exponent is your degree.
The number before the highest term is your leading coeff, if there is no number it is 1.
The turning points are where the graph goes from falling to increasing or vice versa.
End behaviour you have to look at what why does when x goes to -inf and inf.
X int are the points at which the graph crosses the x-axis.
The relative min and max are findable if you plug in the graph on desmos or a graphing calculator.
9514 1404 393
Answer:
D. 12
Step-by-step explanation:
There are a number of ways to find the area of this rectangle. Perhaps the most straightforward is to find the lengths of the sides and multiply those. The distance formula is useful.
d = √((x2 -x1)^2 +(y2 -y1)^2)
Using the two upper-left points, we find the length of that side to be ...
d = √((3 -0)^2 +(3 -0)^2) = √(9 +9) = √18 = 3√2
Similarly, the length of the lower-left side is ...
d = √((-2 -0)^2 +(-2 -0)^2) = √(4+4) = √8 = 2√2
Then the area of the rectangle is ...
A = LW
A = (3√2)(2√2) = 3·2·(√2)^2 = 3·2·2 = 12
The area of rectangle ABCD is 12.
_____
Other methods include subtracting the area of the corner triangles from the area of the bounding square:
5^2 -2(1/2)(3·3) -2(1/2)(2·2) = 25 -9 -4 = 12
The maximum number of packs Jess can buy is 3 packs.
Answer:
Step-by-step explanation:3
Answer:
30=15
Step-by-step explanation:
30=40-30+6-4-27
30=10+2-27
40=12-27
30=-15