1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
damaskus [11]
3 years ago
8

What's the surface area of a sphere with radius 5 centimeters

Mathematics
1 answer:
torisob [31]3 years ago
3 0
Surface area: 4*pi*r^2 = 4*pi*5^2= 4*25*pi = 100pi or <span>314.16</span>
You might be interested in
Which equation show you how to find 16-9
natima [27]
7+9=16 you can use that cause that is the opposite equation
3 0
3 years ago
Read 2 more answers
How does one explain how to graph a point on the coordinate grid?
Neko [114]

Answer:

Firstly you have to know the x and y points,

then you use the coordinate grid to plot the points and then draw the graph from the points that has been plotted.

Hopefully this helps :)

8 0
3 years ago
(10 points) Consider the initial value problem y′+3y=9t,y(0)=7. Take the Laplace transform of both sides of the given differenti
Rashid [163]

Answer:

The solution

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3 t}

Step-by-step explanation:

<u><em>Explanation</em></u>:-

Consider the initial value problem y′+3 y=9 t,y(0)=7

<em>Step(i)</em>:-

Given differential problem

                           y′+3 y=9 t

<em>Take the Laplace transform of both sides of the differential equation</em>

                L( y′+3 y) = L(9 t)

 <em>Using Formula Transform of derivatives</em>

<em>                 L(y¹(t)) = s y⁻(s)-y(0)</em>

  <em>  By using Laplace transform formula</em>

<em>               </em>L(t) = \frac{1}{S^{2} }<em> </em>

<em>Step(ii):-</em>

Given

             L( y′(t)) + 3 L (y(t)) = 9 L( t)

            s y^{-} (s) - y(0) +  3y^{-}(s) = \frac{9}{s^{2} }

            s y^{-} (s) - 7 +  3y^{-}(s) = \frac{9}{s^{2} }

Taking common y⁻(s) and simplification, we get

             ( s +  3)y^{-}(s) = \frac{9}{s^{2} }+7

             y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

<em>Step(iii</em>):-

<em>By using partial fractions , we get</em>

\frac{9}{s^{2} (s+3} = \frac{A}{s} + \frac{B}{s^{2} } + \frac{C}{s+3}

  \frac{9}{s^{2} (s+3} =  \frac{As(s+3)+B(s+3)+Cs^{2} }{s^{2} (s+3)}

 On simplification we get

  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

 Put s =0 in equation(i)

   9 = B(0+3)

 <em>  B = 9/3 = 3</em>

  Put s = -3 in equation(i)

  9 = C(-3)²

  <em>C = 1</em>

 Given Equation  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

Comparing 'S²' coefficient on both sides, we get

  9 = A s²+3 A s +B(s)+3 B +C(s²)

 <em> 0 = A + C</em>

<em>put C=1 , becomes A = -1</em>

\frac{9}{s^{2} (s+3} = \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}

<u><em>Step(iv):-</em></u>

y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

y^{-}(s)  =9( \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}) + \frac{7}{s+3}

Applying inverse Laplace transform on both sides

L^{-1} (y^{-}(s) ) =L^{-1} (9( \frac{-1}{s}) + L^{-1} (\frac{3}{s^{2} }) + L^{-1} (\frac{1}{s+3}) )+ L^{-1} (\frac{7}{s+3})

<em>By using inverse Laplace transform</em>

<em></em>L^{-1} (\frac{1}{s} ) =1<em></em>

L^{-1} (\frac{1}{s^{2} } ) = \frac{t}{1!}

L^{-1} (\frac{1}{s+a} ) =e^{-at}

<u><em>Final answer</em></u>:-

<em>Now the solution , we get</em>

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3t}

           

           

5 0
3 years ago
Help me please<br><br> 4÷ 1 1/4
Otrada [13]

Answer:

3.2

Step-by-step explanation:

7 0
3 years ago
Which pair of numbers have a GCF of 3? Choose all answers that are correct.
Mariulka [41]
B: 3 & 9 They are the smallest numbers but three still fits into both of them
3 0
3 years ago
Read 2 more answers
Other questions:
  • a 12 ft by 15 ft swimming pool has a 3 ft wide no slip surface around it. what is the outer perimeter of the no slip surface?
    14·1 answer
  • The solution set x ≤ 2 or x ≥ 4 is consistent with an equation of the form
    7·2 answers
  • Pls someone help with this one
    8·1 answer
  • The linear inequalities that will limit the solution region in a linear programming problem are called the ___.
    11·1 answer
  • Real or Irrational?<br> 2.395...
    10·1 answer
  • 28-y+9
    7·1 answer
  • The management of a large airline wants to estimate the average time after takeoff taken before the crew begins serving snacks a
    10·1 answer
  • 1. answer the three questions below about the quadrilateral:
    9·2 answers
  • Part 1 of 2
    8·1 answer
  • Jazmyn uses 2 gallons of paint to paint 5 walls. He uses 4 gallons of paint to paint 10 walls. How many gallons of paint does he
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!