1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Y_Kistochka [10]
3 years ago
10

Please answer due today!

Mathematics
1 answer:
galben [10]3 years ago
5 0

Answer:

-9 and 7

Step-by-step explanation:

You might be interested in
The volume of this rectangular prism is 4x^3 (4x cubed). What does the coefficient 4 mean in terms of the problem?
yKpoI14uk [10]
It means that has four of those cubes inside one prism... it's hard to explain but x^3 is ONE CUBE not prism, YOU HAVE FOUR of them, hope this helpz
5 0
3 years ago
Read 2 more answers
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
3 years ago
Suppose two acid solutions are mixed. One is 26% acid and the other is 34% acid. Which one of the following concentrations canno
valentina_108 [34]

Answer:

A

Step-by-step explanation:

7 0
3 years ago
Look at the ingredients to make honey biscuits. Work out how much of each ingredient is needed to make: a) 100 honey biscuits. b
Svetllana [295]

Answer:

look bellow

Step-by-step explanation:

100:

25x4=100

50x4=200g

75x4=300g

75x4=300g

100x4=400ml

40:

25x1.6=40

50x1.6=80g

75x1.6=120g

75x1.6=120g

100x1.6=160ml

6 0
3 years ago
The speed of sound in air is a linear function of the air temperature. When the air temperature is 10°C, the speed of sound is 3
Sergeu [11.5K]

9514 1404 393

Answer:

  process: substitute the given point values into the 2-point form of the equation for a line

Step-by-step explanation:

There are more than a half-dozen different forms of the equation for a line. They are useful for different purposes. One of them is the "two-point form".

Using x as the independent variable, and y as the dependent variable, the equation can be written as ...

  y -y1 = (y2 -y1)/(x2 -x1)/(x -x1)

where (x1, y1) and (x2, y2) are the two points.

__

Here, your two points are ...

  (t, s) = (10, 337) and (30, 349)

Using s in place of y, and t in place of x, these two points go into the formula like this:

  s -337 = (349 -337)/(30 -10)(t -10)

Simplifying the fraction, this is ...

  s -337 = (12/20)(t -10)

And writing it as a decimal, we get ...

  s -337 = 0.6(t -10)

_____

<em>Additional comments</em>

Adding y1 to both sides of the above form gives you ...

  y = (y2 -y1)/(x2 -x1)/(x -x1) +y1

This is the form I usually prefer to use, because it can lead directly to slope-intercept form. For this problem, the form shown above gets you to the answer you're looking for.

__

This "two-point form" is an expansion of the "point-slope form", which is ...

  y - k = m(x -h) . . . . . . . line with slope m through point (h, k)

where the equation for slope is ...

  m = (y2 -y1)/(x2 -x1)

and (x1, y1) is used instead of (h, k).

5 0
3 years ago
Read 2 more answers
Other questions:
  • I have no idea how to do Log problems like this. Can anyone help me out?
    10·2 answers
  • A bag contains 5 purple, 24 green, 12 yellow, and 18 gray marbles. A marble is drawn at random. What is the theoretical probabil
    8·2 answers
  • Is this statement always sometimes or never true. If x and y are supplementary angels then x is obtuse
    7·2 answers
  • How do I solve the equation (x+3)^1/2-1=x
    8·1 answer
  • 21:20
    11·1 answer
  • Which graph represents a step function?
    14·2 answers
  • The figure shows the front side of a metal desk in the shape of a trapezoid.
    6·2 answers
  • Find the value of y.<br> (6x - 13)<br> (3y + 1)<br> (8x - 61)
    11·1 answer
  • You’re given two side lengths of 3 centimeters and 5 centimeters. Which measurement can you use for the length of the third side
    8·1 answer
  • Use Pythagorean Theorem to solve for D. Round your answer to the nearest tenth
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!