Where are the choices? What following answers?
1. Regulation of glucose blood levels is an example of negative feedback mechanism.
Negative feedback mechanism is a control mechanism involved in homeostasis maintain, in this case maintenance of glucose blood levels in normal range.
Negative feedback mechanism contains sensory system that detects the changes, control system that responds to change and activates mechanisms of effector system that reverse the changes in order to restore conditions to their normal levels.
• Pancreatic cells-sensors
• Insulin-control system
• Body cells- effector cells
2. Blood glucose levels change throughout the day because of the food consumption, but in healthy individuals levels of glucose are successfully regulated via the mechanism of hormones such as insulin and glucagon in a process called glucose blood regulation.
This tight regulation of pancreatic hormones is referred to as glucose homeostasis. Insulin lowers blood sugar and glucagon raises it.
3. If the beta cells are destroyed by an autoimmune disease (immune system attacks its own cells), there would be no insulin release, and consequently, the glucose blood levels would be increased.
Diabetes type I is a metabolic disorder caused by the destruction of insulin-producing pancreatic beta cells.
Electricity is added to recharge a battery. A third phosphate group is added to ADP to form ATP.
ATP or Adenosine triphosphate contains adenine, ribose and 3 phosphate groups.
ADP is converted to ATP by the following reaction:
ADP+Pi+energy⇄ATP
The analogy between battery and ATP can be explained as ATP is higher energy form and ADP is lower energy form like charged and uncharged form of the battery. When the terminal or third phosphate is removed from the ATP it becomes ADP and releases energy like a battery. The additional phosphate group when added to ADP forms the ATP molecule like the energy spent by the batteries are recharged by putting in additional energy. Here the additional energy is provided by the third phosphate group.
Answer:
No, a person's genotype cannot be determined solely by their phenotype as many genes in our genome do not get expressed.
Explanation:
Frontal lobe because its where decisions are made and behaviors are choices (in most cases).