Answer:
1
Step-by-step explanation:
To answer this question, we need to that any number (except zero) raised to power 0 is equal to 1. With that in mind, let's solve this:
2y^0 - (3y)^0
= 2(1) - (1)
= <u>1</u>
<em>N</em><em>o</em><em>t</em><em>e</em><em>:</em><em> </em><em>2</em><em>y</em><em>^</em><em>0</em><em> </em><em>=</em><em> </em><em>2</em><em>(</em><em>y</em><em>^</em><em>0</em><em>)</em><em> </em><em>=</em><em> </em><em>2</em><em>(</em><em>1</em><em>)</em><em> </em><em>=</em><em> </em><em>2</em><em> </em><em>w</em><em>h</em><em>e</em><em>r</em><em>e</em><em>a</em><em>s</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>(</em><em>2</em><em>y</em><em>)</em><em>^</em><em>0</em><em> </em><em>=</em><em> </em><em>1</em>
Answer:
109
Step-by-step explanation:
Answer:
1371.6 (cm) are in 15 yards
Step-by-step explanation:
1371.6 centimeters are in 15 yards since 1 yard is equal to 91.44.
Answer: AAA similarity.
Step-by-step explanation: CB is the transversal for the parallel lines AB and DE, and so by transverse property, we have ∠CED ≅ ∠CBA. Similarly, CA acts as a tranversal for the same pair of parallel lines AB and DE and using the same property, we can have ∠CDE ≅ ∠CAB. Now, in triangles CED and ABC, we have
∠CED ≅ ∠CBA,
∠CDE ≅ ∠CAB
and
∠DCE ≅ ∠ACB [same angle]
Hence, by AAA (angle-angle-angle) similarity,
△CED ~ △ABC.
Thus, the correct option is AAA similarity.
Both angles WILL have the same measure.
So,
3x-10= x+40 (you have to set the equations equal to one another)
Now, add 10 to both sides.
3x=x+50
Subtract x on both sides.
2x=50
Divide both sides by 2.
x=25
Now, plug in x.
(25 +40)= 65
(3(25)-10)= 65
x equals 25 and both angles are equal to 65. Or "B".
I hope this helps!
~cupcake