Answer:
See Explanation
Step-by-step explanation:
a) Additive inverse of −2
- the additive inverse of a number a is the number that, when added to 'a', yields zero. This number is also known as the opposite (number), sign change, and negation.
- So the Additive inverse of -2 is 2. ∴ -2+2=0
b) Additive identity of −5
- Additive identity is the value when added to a number, results in the original number. When we add 0 to any real number, we get the same real number.
- -5 + 0 = -5. Therefore, 0 is the additive identity of any real number.
c) additive inverse of 3
- Two numbers are additive inverses if they add to give a sum of zero. 3 and -3 are additive inverses since 3 + (-3) = 0. -3 is the additive inverse of 3.
d). multiplicative identity of 19
- an identity element (such as 1 in the group of rational numbers without 0) that in a given mathematical system leaves unchanged any element by which it is multiplied
- Multiplicative identity if 19 is 1 only, since 19 x 1 = 19.
e) multiplicative inverse of 7
- Dividing by a number is equivalent to multiplying by the reciprocal of the number. Thus, 7 ÷7=7 × 1⁄7 =1. Here, 1⁄7 is called the multiplicative inverse of 7.
d) | 11-5|×|1-5|
- | 11-5|×|1-5| ⇒ I6I×I-4I ⇒ 6×4 ⇒ 24
Answer:
D 1.33
Step-by-step explanation:
B and C are less than 1
A is one and .30
D is one and .33
33>30
J = 20
it's very easy, aren't you really able to find that by yourself?
The cups of milk Laura gave to Maria is 19/12 cups is 19/12 cups
<h3>How to calculate fraction</h3>
- Total cups of milk to share = 2 1/4 cups
Total = Laura + Maria
2 1/4 = x + 2/3
2 1/4 - 2/3 = x
9/4 - 2/3 = x
(27-8) / 12 = x
19/12 = x
= 1 7/12
Therefore, the cups of milk Laura gave to Maria is 19/12 cups
Learn more about fraction:
brainly.com/question/11562149
Explicit Functiony = f(x) is said to define y explicitly as a function of x because the variable y appears alone on one side of the equation and does not appear at all on the other side. (ex. y = -3x + 5)Implicit FunctionAn equation in which y is not alone on one side. (ex. 3x + y = 5)Implicit DifferentiationGiven a relation of x and y, find dy/dx algebraically.d/dx ln(x)1/xd/dx logb(x) (base b)1/xln(b)d/dx ln(u)1/u × du/dxd/dx logb(u) (base b)1/uln(b) × du/dx(f⁻¹)'(x) = 1/(f'(f⁻¹(x))) iff is a differentiable and one-to-one functiondy/dx = 1/(dx/dy) ify = is a differentiable and one-to-one functiond/dx (b∧x)b∧x × ln(b)d/dx e∧xe∧xd/dx (b∧u)b∧u × ln(b) du/dxd/dx (e∧u)e∧u du/dxDerivatives of inverse trig functionsStrategy for Solving Related Rates Problems<span>1. Assign letters to all quantities that vary with time and any others that seem relevant to the problem. Give a definition for each letter.
2. Identify the rates of change that are known and the rate of change that is to be found. Interpret each rate as a derivative.
3. Find an equation that relates the variables whose rates of change were identified in Step 2. To do this, it will often be helpful to draw an appropriately labeled figure that illustrates the relationship.
4. Differentiate both sides of the equation obtained in Step 3 with respect to time to produce a relationship between the known rates of change and the unknown rate of change.
5. After completing Step 4, substitute all known values for the rates of change and the variables, and then solve for the unknown rate of change.</span>Local Linear Approximation formula<span>f(x) ≈ f(x₀) + f'(x₀)(x - x₀)
f(x₀ + ∆x) ≈ f(x₀) + f'(x₀)∆x when ∆x = x - x₀</span>Local Linear Approximation from the Differential Point of View∆y ≈ f'(x)dx = dyError Propagation Variables<span>x₀ is the exact value of the quantity being measured
y₀ = f(x₀) is the exact value of the quantity being computed
x is the measured value of x₀
y = f(x) is the computed value of y</span>L'Hopital's RuleApplying L'Hopital's Rule<span>1. Check that the limit of f(x)/g(x) is an indeterminate form of type 0/0.
2. Differentiate f and g separately.
3. Find the limit of f'(x)/g'(x). If the limit is finite, +∞, or -∞, then it is equal to the limit of f(x)/g(x).</span>