Answer: B. 12.25 W
please give brainliest!
Explanation:
1) Force = Weight = 75 x 9.8 = 735 N
2.)Work = Force x Height = 735 x 5 = 3675 J
3.)Power = Work / Time = 3675 / (5 x 60) = 12.25 W
To measure the density of the stone placed in a graduated cylinder let us follow these steps bellow
- Measure the volume of water poured into a graduated cylinder
- Place the object in the water and remeasure the volume.
- The difference between the two volume measurements is the volume of the object.
- Divide the mass by the volume to calculate the density of the object.
<em>We know that the formula for density is given as </em>
Given data
Mass = 8gram
Initial Volume of water in cylinder = 25mL
Final Volume of water in cylinder = 29mL
Hence the volume of the rock = 29-25 = 4mL
Therefore the density of the rock = 8/4 = 2 g/mL
Learn more:
brainly.com/question/17336041
Answer:
D) N2O5
Explanation:
The molar mass of a substance is defined as the mass of this substance in 1 mol. To solve this question we must find the molar mass of each option:
<em>Molar mass NO:</em>
1N = 14g/mol*1
1O = 16g/mol*1
14+16 = 30g/mol
<em>Molar mass NO2:</em>
1N = 14g/mol*1
2O = 16g/mol*2
14+32 = 46g/mol
<em>Molar mass N2O:</em>
2N = 14g/mol*2
1O = 16g/mol*1
28+16 = 44g/mol
<em>Molar mass N2O5:</em>
2N = 14g/mol*2
5O = 16g/mol*5
28+80 = 108g/mol
That means the compound with the greatest mass is:
<h3>D) N2O5</h3>
<h3>The density of H₂ = 0.033 g/L</h3><h3>Further explanation</h3>
In general, the gas equation can be written

where
P = pressure, atm , N/m²
V = volume, liter
n = number of moles
R = gas constant = 0.082 l.atm / mol K (P= atm, v= liter),or 8,314 J/mol K (P=Pa or N/m², v= m³)
T = temperature, Kelvin
n = N / No
n = mole
No = Avogadro number (6.02.10²³)
n = m / MW
m = mass
MW = molecular weight
For density , can be formulated :

P = 327 mmHg = 0,430263 atm
R = 0.082 L.atm / mol K
T = 48 ºC = 321.15 K
MW of H₂ = 2.015 g/mol
The density :

This is a combustion reaction because it is being combined with oxygen. Then to balance you will put the number of carbons you have or 4 in front of the CO2 and then same with H2. Then you will add up the oxygen and divide it by two to get. 1, (13/2), 4, 5