Answer:
Step-by-step explanation:
roots of a complex number is given by DeMoivre's formula.
![\sf \boxed{\bf r^{\frac{1}{n}}\left[Cos \dfrac{\theta + 2\pi k}{n}+i \ Sin \ \dfrac{\theta+2\pi k}{n}\right]}](https://tex.z-dn.net/?f=%5Csf%20%5Cboxed%7B%5Cbf%20r%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D%5Cleft%5BCos%20%5Cdfrac%7B%5Ctheta%20%2B%202%5Cpi%20k%7D%7Bn%7D%2Bi%20%5C%20Sin%20%5C%20%5Cdfrac%7B%5Ctheta%2B2%5Cpi%20k%7D%7Bn%7D%5Cright%5D%7D)
Here, k lies between 0 and (n -1) ; n is the exponent.

a = -1 and b = √3




n = 4
For k = 0,
![\sf z = \sqrt[4]{10}\left[Cos \ \dfrac{\dfrac{-\pi}{3} +0}{4}+iSin \ \dfrac{\dfrac{-\pi}{3}+0}{4}\right] \\\\\\z= \sqrt[4]{10} \left[Cos \ \dfrac{ -\pi }{12}+iSin \ \dfrac{-\pi}{12}\right]\\\\\\z = \sqrt[4]{10}\left[-Cos \ \dfrac{\pi}{12}-i \ Sin \ \dfrac{\pi}{12}\right]](https://tex.z-dn.net/?f=%5Csf%20z%20%3D%20%5Csqrt%5B4%5D%7B10%7D%5Cleft%5BCos%20%5C%20%5Cdfrac%7B%5Cdfrac%7B-%5Cpi%7D%7B3%7D%20%2B0%7D%7B4%7D%2BiSin%20%20%5C%20%5Cdfrac%7B%5Cdfrac%7B-%5Cpi%7D%7B3%7D%2B0%7D%7B4%7D%5Cright%5D%20%5C%5C%5C%5C%5C%5Cz%3D%20%5Csqrt%5B4%5D%7B10%7D%20%5Cleft%5BCos%20%5C%20%5Cdfrac%7B%20-%5Cpi%20%20%7D%7B12%7D%2BiSin%20%20%5C%20%5Cdfrac%7B-%5Cpi%7D%7B12%7D%5Cright%5D%5C%5C%5C%5C%5C%5Cz%20%3D%20%5Csqrt%5B4%5D%7B10%7D%5Cleft%5B-Cos%20%5C%20%5Cdfrac%7B%5Cpi%7D%7B12%7D-i%20%5C%20Sin%20%5C%20%5Cdfrac%7B%5Cpi%7D%7B12%7D%5Cright%5D)
For k =1,
![\sf z = \sqrt[4]{10}\left[Cos \ \dfrac{5\pi}{12}+i \ Sin \ \dfrac{5\pi}{12}\right]](https://tex.z-dn.net/?f=%5Csf%20z%20%3D%20%5Csqrt%5B4%5D%7B10%7D%5Cleft%5BCos%20%5C%20%5Cdfrac%7B5%5Cpi%7D%7B12%7D%2Bi%20%5C%20Sin%20%5C%20%5Cdfrac%7B5%5Cpi%7D%7B12%7D%5Cright%5D)
For k =2,
![z = \sqrt[4]{10}\left[Cos \ \dfrac{11\pi}{12}+i \ Sin \ \dfrac{11\pi}{12}\right]](https://tex.z-dn.net/?f=z%20%3D%20%5Csqrt%5B4%5D%7B10%7D%5Cleft%5BCos%20%5C%20%5Cdfrac%7B11%5Cpi%7D%7B12%7D%2Bi%20%5C%20Sin%20%5C%20%5Cdfrac%7B11%5Cpi%7D%7B12%7D%5Cright%5D)
For k = 3,
![\sf z = \sqrt[4]{10}\left[Cos \ \dfrac{17\pi}{12}+i \ Sin \ \dfrac{17\pi}{12}\right]](https://tex.z-dn.net/?f=%5Csf%20z%20%3D%20%5Csqrt%5B4%5D%7B10%7D%5Cleft%5BCos%20%5C%20%5Cdfrac%7B17%5Cpi%7D%7B12%7D%2Bi%20%5C%20Sin%20%5C%20%5Cdfrac%7B17%5Cpi%7D%7B12%7D%5Cright%5D)
For k = 4,
![\sf z =\sqrt[4]{10}\left[Cos \ \dfrac{23\pi}{12}+i \ Sin \ \dfrac{23\pi}{12}\right]](https://tex.z-dn.net/?f=%5Csf%20z%20%3D%5Csqrt%5B4%5D%7B10%7D%5Cleft%5BCos%20%5C%20%5Cdfrac%7B23%5Cpi%7D%7B12%7D%2Bi%20%5C%20Sin%20%5C%20%5Cdfrac%7B23%5Cpi%7D%7B12%7D%5Cright%5D)
Answer:
No.
Step-by-Step Explanation:
When two lines are parallel, they might or might not be equal. It is not necessary that they should be equal.
See the triangle below in which two lines are parallel to each other.
Answer:
Hope these helps
Step-by-step explanation:
5 a. 32% of 881 = 281.92
5 b. 39% of 719 = 280.41
6 a. 35% of 441 = 154.35
6 b. 67% of 429 = 287.43
7 a. 21% of 358 = 75.18
7 b. 47% of 6 =2.82
8 a. 67% of 811 = 543.37
8 b.
97% of 311 = 301.67
I think these are the sums of perfect cubes.
A = (2x²)³ + (3)³
B = (x³)³ + (1)³
D = (x²)³ + (x)³
E = (3x³)³ + (x^4)³
Answer:
8.0623
Explanation:
Distance between two points = √
(
−
2 − − 9
)^
2
+
(
−
2 − − 6)^
2
= √
7
^2+
4
^2
=
√
49 + 16
=√
65 = 8.0623
Distance between points (-9, -6) and (-2, -2) is 8.0623