Answer:
the answer will be 5.6 j..
hope you like the answer.....
Complete Question
An isolated charged soap bubble of radius R0 = 7.45 cm is at a potential of V0=307.0 volts. V0=307.0 volts. If the bubble shrinks to a radius that is 19.0%19.0% of the initial radius, by how much does its electrostatic potential energy ????U change? Assume that the charge on the bubble is spread evenly over the surface, and that the total charge on the bubble r
Answer:
The difference is 
Explanation:
From the question we are told that
The radius of the soap bubble is 
The potential of the soap bubble is 
The new radius of the soap bubble is 
The initial electric potential is mathematically represented as
The final electric potential is mathematically represented as
The initial potential is mathematically represented as

The final potential is mathematically represented as

Now

substituting values

=> 
So
Therefore
where k is the coulomb's constant with value 
substituting values

Answer:
A mousetrap makes use of a simple machine called a lever.
Explanation:
In a second-class lever the effort force is at the other end, with the load in the middle. In a third-class lever, the load is at the end and the effort force is between the fulcrum and the load. When you set the mousetrap, you are using a second-class lever. Sorry if I get this wrong. I am in 5th grade! ♥
Answer:
B
Magnified images will not be created.
Explanation:
I did it and this was the correct answer
Newton's second law also helps to explain what happens every time an athlete lands during running. When the foot hits the track, it will decelerate to a stop before leaving the track again. The faster the deceleration, the greater the force of impact on the foot.