bearing in mind that "a" is the length of the traverse axis, and "c" is the distance from the center to either foci.
we know the center is at (0,0), we know there's a vertex at (-48,0), from the origin to -48, that's 48 units flat, meaning, the hyperbola is a horizontal one running over the x-axis whose a = 48.
we also know there's a focus point at (50,0), that's 50 units from the center, namely c = 50.
![\bf \textit{hyperbolas, horizontal traverse axis } \\\\ \cfrac{(x- h)^2}{ a^2}-\cfrac{(y- k)^2}{ b^2}=1 \qquad \begin{cases} center\ ( h, k)\\ vertices\ ( h\pm a, k)\\ c=\textit{distance from}\\ \qquad \textit{center to foci}\\ \qquad \sqrt{ a ^2 + b ^2}\\ \textit{asymptotes}\quad y= k\pm \cfrac{b}{a}(x- h) \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bhyperbolas%2C%20horizontal%20traverse%20axis%20%7D%20%5C%5C%5C%5C%20%5Ccfrac%7B%28x-%20h%29%5E2%7D%7B%20a%5E2%7D-%5Ccfrac%7B%28y-%20k%29%5E2%7D%7B%20b%5E2%7D%3D1%20%5Cqquad%20%5Cbegin%7Bcases%7D%20center%5C%20%28%20h%2C%20k%29%5C%5C%20vertices%5C%20%28%20h%5Cpm%20a%2C%20k%29%5C%5C%20c%3D%5Ctextit%7Bdistance%20from%7D%5C%5C%20%5Cqquad%20%5Ctextit%7Bcenter%20to%20foci%7D%5C%5C%20%5Cqquad%20%5Csqrt%7B%20a%20%5E2%20%2B%20b%20%5E2%7D%5C%5C%20%5Ctextit%7Basymptotes%7D%5Cquad%20y%3D%20k%5Cpm%20%5Ccfrac%7Bb%7D%7Ba%7D%28x-%20h%29%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D)

Answer:
V = D. 75.4 in.³ (Answer D)
Step-by-step explanation:
The can volume is V = πr²h, which in this particular case is
V = π(2 in)²(6 in), or
V = D. 75.4 in.³ (Answer D)
Answer:
2y = 3x + 10 --> almost there already, just divide everything by 2 to get y by itself. y = 3/2x + 5 --> now you have it in the y=mx + b form, so your slope is 3/2 They asked for the parallel line, remember parallel lines have the same slope, therefore you use the same slope.
It is -9x + 9.
Use the distribution property.
Answer:
2
Step-by-step explanation: