Answer: 10, 11, & 12
<u>Step-by-step explanation:</u>
Let x represent the age of the youngest child.
Their ages are consecutive so,
Youngest: x
Middle: x + 1
Oldest: x + 2
The age of the Youngest squared (x²) equals 8 times the Oldest [8(x + 2)] plus 4.
x² = 8(x + 2) + 4
x² = 8x + 16 + 4
x² = 8x + 20
x² - 8x - 20 = 0
(x - 10)(x + 2) = 0
x - 10 = 0 or x + 2 = 0
x = 10 or x = -2
Since age cannot be negative, x = -2 is not valid
So, the Youngest (x) is 10
the Middle (x + 1) is 11
and the Oldest (x + 2) is 12
You take a calculator right and JUST DO IT!!!!!!!!!............JUST DO IT!!!!!!!
Dont let memes be dreams JUST DO IT!!!!1
You SAID YESTERDAY THAT YOU WOULD USE MEMES SO JUST DO IT
11. You’ve done it correctly
12. Let x^2=y
y^2+13y+40=0
(y+8)(y+5)=0
y=8, 5
Since y=x^2
x^2=8 x^2=5
x=+/-√5 x= +/-2√2
13. x^4-x^2-x^2-8=0
x^4-2x^2-8=0
let x^2=y
Y^2-2y-8=0
(y-4)(y+2)=0
y=4, -2
Since y=x^2
X^2=4 X^2=-2
X= +/- 2 This wouldn’t be a real solution
14. It’s pretty much the same process, just substitute y in for x^2. If you’re confused feel free to ask and I can do it, or you can put it through Photomath
15. You’re on the right track so I’m just going to continue from where you left off
x^2(4x+5)-4(x+5)=0
(x^2-4)(4x+5)=0
x= +/- 2 4x=5
x=5/4 or 1 1/4
Hope this helped :)
Answer:
16.5 ft by 25.5 ft
Step-by-step explanation:
Let w represent the width of the garden in feet. Then w+9 is the garden's length, and w(w+9) represents its area.
The surrounding walkway adds 8 feet to each dimension, so the total area of the garden with the walkway is ...
(w+8)(w+9+8) = w^2 +25w +136
If we subtract the area of the garden itself, then the remaining area is that of the walkway:
(w^2 +25w +136) - (w(w+9)) = 400
16w + 136 = 400 . . .simplify
16w = 264 . . . . . . . . subtract 136
264/16 = w = 16.5 . . . . . width of the garden in feet
w+9 = 25.5 . . . . . . . . . . .length of the garden in feet