To determine the centroid, we use the equations:
x⁻ =
1/A (∫ (x dA))
y⁻ = 1/A (∫ (y dA))
First, we evaluate the value of A and dA as follows:
A = ∫dA
A = ∫ydx
A = ∫3x^2 dx
A = 3x^3 / 3 from 0 to 4
A = x^3 from 0 to 4
A = 64
We use the equations for the centroid,
x⁻ = 1/A (∫ (x dA))
x⁻ = 1/64 (∫ (x (3x^2 dx)))
x⁻ = 1/64 (∫ (3x^3 dx)
x⁻ = 1/64 (3 x^4 / 4) from 0 to 4
x⁻ = 1/64 (192) = 3
y⁻ = 1/A (∫ (y dA))
y⁻ = 1/64 (∫ (3x^2 (3x^2 dx)))
y⁻ = 1/64 (∫ (9x^4 dx)
y⁻ = 1/64 (9x^5 / 5) from 0 to 4
y⁻ = 1/64 (9216/5) = 144/5
The centroid of the curve is found at (3, 144/5).
Answer:
A has 263 calories
B has 257 calories
Step-by-step explanation:
system of equations:
a + 2b = 777
2a + b = 783
I multiplied the first equation by -2 to eliminate the 'a' terms
-2a - 4b = -1554
+ <u> 2a + b = 783</u>
-3b = -771
b = 257
solve for 'a'
a + 2(257) = 777
a + 514 = 777
a = 263
Answer:
you're weirdjhsajsjkudhudhuehuehudhuihduihewi