Answer:
vertex = (- 1, 1 )
Step-by-step explanation:
Given a parabola in standard form
y = ax² + bx + c ( a ≠ 0 )
Then the x- coordinate of the vertex is
x = - 
y = x² + 2x + 2 ← is in standard form
with a = 1 and b = 2 , then
x = -
= - 1
substitute x = - 1 into the equation for y- coordinate of vertex
y = (- 1)² + 2(- 1) + 2 = 1 - 2 + 2 = 1
vertex = (- 1, 1 )
Hello!
I was going to try to use the slope formula, and solve for the y-intercept, but the given graph is hard to distinguish accurate ordered pairs. So, we will find the equation with the graph instead.
Looking at the graph, we can see that the y-intercept is negative. Also, we can also determine that each square represents one unit. So, the y-intercept has to be -3/2 or -1.5. That removes the choices A and C because the y-intercept is in between the values of -1 and -2.
Secondly, the graph has a positive slope. Why? When the x-values increase, the y-values increase. Also, when the x-values decrease, the y-values also decrease. This tells us that the graph has a positive slope (this doesn't remove any choices, but it helps to distinguish which graph has a positive or negative slope).
Finally, we know that if the slope is greater than one, then it is steeper (m > 1). But, if it's less than one, then it becomes less steep (0 < m < 1). Looking at the graph, the graph looks relatively steep (graphing the equations y = 5/7 x - 3/2 and y = 7/5x - 3/2 can help you see the differences between them).
Therefore, the equation of the line given by the graph is choice D, y = 7/5 x − 3/2.
F(x) = -3e^(x + 1)
f(2) = -3e^(2 + 1) = -3e^3