Answer: The heat energy produced is 53831.25KJ
Explanation:
METHANE is the main component of natural gas. It can undergo combustion reaction in air with a bright blue flame to produce carbondioxide and water. The heat of reaction (enthalpy) is negative because heat is absorbed during the chemical reaction. To calculate the heat energy produced by the combustion of one kilogram (1 kg) of methane the following steps are taken:
Molecular mass of methane =16 gm/mol.
So moles of 1 kg methane =
Given mass of methane ÷ molecular weight of methane
But the given mass = 1kg = 1000g
Therefore,
moles of 1000g methane = 1000÷16
= 62.5 moles
Hence, energy evolved = (moles of methane) × (heat of combustion)
Therefore,
heat energy produced= 62.5 × (-861.3kj)
= -53831.25kj
PH of a solution is -ln[H3O+]
so,in case of A pH=3 or,-log[H3O+]=3 or,[H3O+]=10^-3
in case of B pH=6 pr,-log[H3O+]=6 or, [H3O+]=10^-6
so,hydronium ion concentration in solution A /the hydronium ion concentration in solution Z
=10^-3/10^-6
=1000
2)
Ca(OH)2+2 HNO3=Ca(NO3)2+2 H2O
so the answer is 2.
The concentration of the basic solution is determined by:
N = (number of moles / volume of solution)
number of moles = 1.09 x 10^-2 mol
volume of solution = 1 liter
N of basic solution = 1.09 x 10^-2 mol / 1 liter
N = 1.09 x 10^-2 mol/L
The initial concentration of Zn (OH)2 is 0; the basic solution is 1.09x10^-2 M, then the concentration of OH in the final solution is 1.09x10^-2 M
Pressure is created by the number of collisions that occur between the molecules and the surface of container. If the temperature in the container is increased this will cause the molecules to move faster. ... By increasing the number of collisions, this will increase the pressure in the container.
Ex: A 5% increase in absolute temperature will resultin a 5% increase in the absolute pressure. ... Resultant pressure changes will vary. A useful thumb rule for water is that pressure in a water-solid system will increase about 100 psi for every 1 F increase in temperature.