1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ddd [48]
3 years ago
15

Simplify 6 -square root of 15 divided by 2

Mathematics
1 answer:
egoroff_w [7]3 years ago
6 0

Answer:

hjyfgtuygtfvfvhjkoijuhgytfrdetrft

Step-by-step explanation:

dcfgvhbjnkiouytrfdr

You might be interested in
Dada la sucesión an = 1700 + 4,1· n2 + 304,9· n
shutvik [7]

Concluimos que la opción correcta es <em>"Solo II"</em>.

Una expresión es una sucesión aritmética si y solo si existe entre dos elementos <em>consecutivos</em> cualesquiera de la serie la misma diferencia. La sucesión aritmética es definida por una expresión de la forma:

a_{n} = a + b\cdot n, n\in \mathbb{N} (1)

Donde a,b son coeficientes de la sucesión.

Asimismo, una expresión es una sucesión geométrica si y solo si entre dos elementos <em>consecutivos</em> cualesquiera de la serie existe la misma razón. La sucesión geométrica es definida por una expresión de la forma:

a_{n} = a\cdot r^{b\cdot n}, n\in \mathbb{N} (2)

Donde a, b, r son coeficientes de la sucesión.

Por último, una expresión es una sucesión monótona creciente si dados dos elementos <em>consecutivos</em> de una serie, el elemento posterior es siempre mayor que el elemento anterior. Matemáticamente, debe satisfacerse la siguiente condición:

\frac{a_{n+1}}{a_{n}} > 1, n\in \mathbb{N} (3)

Esta claro por inspección directa que la sucesión dada no es aritmética ni geométrica y cabe comprobar si es monótona creciente. Valiéndonos de (3), realizamos las operaciones algebraicas pertinentes:

r = \frac{1700 + 4,1\cdot (n+1)^{2}+304,9\cdot (n+1)}{1700 + 4,1\cdot n^{2}+304,9\cdot n}

r = \frac{1700+4,1\cdot (n^{2}+2\cdot n +1) +304,9\cdot (n+1)}{1700 + 4.1\cdot n^{2}+304,9\cdot n}

r = \frac{1700+4,1\cdot n^{2}+304,9\cdot n+4,1\dot (2\cdot n +1) +304.9}{1700+4,1\cdot n^{2}+304,9\cdot n}

r = 1 + \frac{8,2\cdot n +309}{1700 + 4,1\cdot n^{2}+304,9\cdot n}

Como puede apreciarse, r > 1. Por tanto, la sucesión es monótona y creciente.

En consecuencia, concluimos que la opción correcta es <em>"Solo II"</em>.

Invitamos cordialmente a leer esta pregunta sobre sucesiones: brainly.com/question/21709418

4 0
3 years ago
If f(1) = 2 and f(n) = –2f(n − 1) then find the value of f(5).
dybincka [34]

Answer: 2f

Explanation:

f(1)=8

f(2)= 2(8) = 16

f(3) = 2(16) = 32

f(4) = 2(32) = 64

f(5) = 2(64) =128

6 0
2 years ago
Hello:) I Hope your having a good day :)),Im NOOOOT MY STOMCAH HURTS SO BAD:(((((
steposvetlana [31]

Answer:

oh noooooooooooooo

Step-by-step explanation:

take this (* ̄3 ̄)╭

5 0
3 years ago
Read 2 more answers
The least of 3 consecutive integers is a, and the greatest is z. What is the value of a + 2z/ 2 in terms of a?
jasenka [17]

Answer:

The value of a + 2z/ 2 in terms of a is (3a+4)/2

Step-by-step explanation:

least of 3 consecutive integers is a, and the greatest is z

if a is the least one

we know that integers differ by value of 1.

example -2, -1, 0, 1,2

they all differ by

then next consecutive integer will be a+1

third integer will be  second integer +1 = a+1 + 1 = a+2

Thus, 3 consecutive integer

a , a+1, a+2

but given that greatest is z

thus, a+2 is greatest and hence

a+2 = z

we have to find   value of a + 2z/ 2 in terms of a

a + 2z/ 2 = a + 2(a+2)/2 = (a+ 2a +4)/2 = (3a+4)/2.

The value of a + 2z/ 2 in terms of a is (3a+4)/2

4 0
3 years ago
The Tour de France is a bike race around the country of France. The bike race is a three week race that covers approximately 2,2
valentinak56 [21]

Answer:

Approximately 54.54% of race happened in the first week.

Step-by-step explanation:

We are given the following in the question:

Length of bike race in three weeks = 2,200 miles

Race covered in first week = 1,200 miles

Percentage of race covered in first week =

=\dfrac{\text{Race covered in first week}}{\text{Total length of race}}\times 100\%\\\\=\dfrac{1200}{2200}\times 100\%\\\\=54.54\%

Thus, approximately 54.54% of race happened in the first week.

4 0
3 years ago
Other questions:
  • What is y+3=7(x−2) written in standard form
    14·2 answers
  • Help please with explain so for further questions like this
    10·1 answer
  • What is (m−3+4n)⋅(−8)
    15·2 answers
  • After 1 month your $120 becomes $121.20. what is the yearly interest rate? ​
    7·1 answer
  • --17 -(-17.9)<br> What is the work?
    10·2 answers
  • 4. The measures of segment BS and segment PS are both 4.5 feet and m_PBS = 56°.
    8·1 answer
  • Can you please answer the question?
    6·1 answer
  • An elephant at the zoo lost 24 pounds over 6 months.The elephant lost the same amount of weight each month.Write an integer that
    7·2 answers
  • Select the correct answer. 2V12. 375 What is the estimated value of V30. 736 ОА. 0. 71 OB. 1. 41 2 OD 2. 45​
    11·1 answer
  • There are 7 piles of papers on a desk. Each pile has the same number of papers. There are 21 papers in all on the desk. How many
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!