Answer:
Step-by-step explanation:
The first step in solving the equation is to cube both sides:
(∛x)³ = (-4)³ . . . . . = (-4)(-4)(-4) = 16(-4) = -64
x = -64 . . . . . simplified
__
We're not sure what "checking" is supposed to involve here. Usually, one would check the answer by seeing if a true statement is made when the answer is put into the original equation.
∛(-64) = -4 . . . true
Many calculators will not compute √(-64) because they compute roots using logarithms. The log of a negative number is not defined.
So, the way one would check this is to cube both sides, which is how we got the answer in the first place. We expect the same result from doing the same operation again, so it isn't really a check.
Answer:
The answer seems to be 3/1.
Step-by-step explanation:
Use the equation:
(y2-y1)/(x2-x1)
Answer:
(A) 180
Step-by-step explanation:
We have to treat those player selections as independent events, since one doesn't influence the other (the fact you chose Joe as a guard, shouldn't have an influence on who'll pick as center, unless there's bad blood between some players... but that's a whole other story).
So, how many ways to pick 2 guards from a selection of 4? The order doesn't seem to matter here, since they don't specify for example that Joe can only play on the left side). So, it's a pure combination calculation:

C(4,2) = 6.
How many ways to pick the 2 forwards from a group of 5? Using the same calculation, we get:
C(5,2) = 10.
And of course, the coach has 3 ways to pick a center player from 3.
Then we multiply the possible ways to pick guards, forwards and center...
6 * 10 * 3 = 180 ways.