Answer:
1. Space-filling
2. Ribbon model
3. Wireframe
4. Simple shape
5. Simplified diagram
Explanation:
"attached is the question"
A protein can be visualized using different types of models. The models you use will depend on what you want the viewer to understand.
A space-filling model would show all the atoms that composes a protein. This type of model makes use of spheres, emphasizing the globular structure of the atoms. They are proportional to the actual size of the atom they represent. Each type of atom is a different color. Even the distances of the spheres are proportional to its size to help viewers better see the actual shape of the protein.
Ribbon model is also a 3D representation of a protein. It shows the only the backbone of the protein. It highlights the folds and coils in a protein, generally the organization. Some versions show the α-helices as ribbons and β-strands are shown as arrows.
Wire frame model is like the ribbon model but it also shows the side chains. It shows the different atoms that are involved. Thin wires show the bonds made between the atoms and the wires bend show the relative location of the atoms.
A simple shape focuses more on the function of the protein overall rather than the internal structures. The shape does not represent a particular protein, merely using a general shape to represent a protein.
A simplified diagram shows more detail than the simple shape. It shows the internal structures as well but like the simple shape model, it focuses more on the function of the protein. A version of it is a solid shape, which does not show the internal structure.
Diverticular disease is the condition
Yes
C is the answer
Hopefully this helps
Given what we know about the use of spectrums, we can confirm that the positions of peaks and dips provide information as to the elemental composition of the object in question.
The question asks about the dips and peaks of a spectrum, which allows us to assume we are dealing with Infrared spectroscopy and IR spectrums. This is defined as the measurement of how certain matter interacts with infrared radiation.
These graphs are used to measure how this matter absorbs, reflects, or even emits said radiation. Therefore, the use of spectrums allows us to infer as to the chemicals present or functional groups of an object, and therefore its elemental composition.
When looking at the spectrum graph, we will see that at times the curve dips down, which indicates that <u><em>less light </em></u>is transmitted. That means light is being absorbed. Due to the fact that bonds absorb different frequencies of light, <u>the </u><u>peaks </u><u>tell you what kinds of </u><u>bonds </u><u>are present from which we can identify the </u><u>elemental composition</u><u>.</u>
<u />
To learn more visit:
brainly.com/question/8339507?referrer=searchResults
Adenylate cyclases (ACs) are the membrane-bound glycoproteins that convert ATP to cAMP and pyrophosphate.
When activated by G-protein Gs, adenylate cyclases (ACs), which are membrane-bound glycoproteins, catalyze the synthesis of cAMP from ATP.
Different AC isoforms are widely expressed in various tissues that participate in regulatory systems in response to particular stimuli.
Humans have 9 different AC isoforms, with AC5 and AC6 thought to be particularly important for cardiac activities.
Nitric oxide has an impact on the activity of AC6, hence the protein's nitrosylation may control how it works. However, little is known about the structural variables that affect nitrosylation in ACs and how they relate to G's.
We predict the cysteines that are prone to nitrosylation using this 3D model, and we use virtual ligand screening to find potential new AC6 ligands.
According to our model, the AC-Gs interface's Cys174 in G's and Cys1004 in AC6 (subunit C2) are two potential residues that could experience reversible nitrosylation.
Learn more about glycoproteins here brainly.com/question/9507947
#SPJ4