1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
VikaD [51]
3 years ago
5

Find dy/dx by implicit differentiation for the following equation. e^x^2=7x+5y+3

Mathematics
1 answer:
lesantik [10]3 years ago
5 0

Answer:

\displaystyle \frac{dy}{dx} = \frac{2e^{2x} - 7}{5}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Exponential Rule [Powering]: \displaystyle (b^m)^n = b^{m \cdot n}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Implicit Differentiation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

eˣ Derivative: \displaystyle \frac{d}{dx}[e^u] = u'e^u

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle (e^x)^2 = 7x + 5y + 3

<u>Step 2: Differentiate</u>

  1. Rewrite [Exponential Rule - Powering]:                                                          \displaystyle e^{2x} = 7x + 5y + 3
  2. Implicit Differentiation:                                                                                   \displaystyle \frac{d}{dx}[e^{2x}] = \frac{d}{dx}[7x + 5y + 3]
  3. [Derivative] eˣ derivative:                                                                                \displaystyle 2e^{2x} = \frac{d}{dx}[7x + 5y + 3]
  4. [Derivative] Basic Power Rule:                                                                       \displaystyle 2e^{2x} = 1 \cdot 7x^{1 - 1} + 1 \cdot 5y^{1 - 1}\frac{dy}{dx}
  5. [Derivative] Simplify:                                                                                       \displaystyle 2e^{2x} = 7 + 5\frac{dy}{dx}
  6. [Derivative] [Subtraction Property of Equality] Subtract 7 on both sides:  \displaystyle 2e^{2x} - 7 = 5\frac{dy}{dx}
  7. [Derivative] [Division Property of Equality] Divide 5 on both sides:            \displaystyle \frac{2e^{2x} - 7}{5} = \frac{dy}{dx}
  8. [Derivative] Rewrite:                                                                                       \displaystyle \frac{dy}{dx} = \frac{2e^{2x} - 7}{5}

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives - Implicit Differentiation

Book: College Calculus 10e

You might be interested in
What is the height (h) of the prism?<br> 3ft<br> 6ft
Blizzard [7]

Answer:

6 ft

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Help me pleasee and also could you explain bc im so confused​
Rufina [12.5K]
What the person said up above should be correct!
3 0
3 years ago
A circular pen has an area of 64<img src="https://tex.z-dn.net/?f=%20%20%5Cpi%20" id="TexFormula1" title=" \pi " alt=" \pi " a
Allisa [31]
What we know:
shape is circular
Area=64π yr²
Area=πr²
circumference=2πr

In order to find circumference we need r=radius. We can use the area to find r by solving for r using substitution of the information we know above.

Area=πr²
64π=πr²                         substitution
64π/π=π/πr²                  multiplicative inverse
64=r²
√64=√r²                          properties of radicals
8=r                     We would get two solutions, a positive and negative one                          but we will only use the positive solution since radius is positive

Circumference=2πr
C=2π(8)=16π yards
7 0
4 years ago
Read 2 more answers
Vince has a rectangular rug in his room with an area of 10 ft the length of the rug is 18 inches longer than the width what coul
aev [14]

The length of the rug is 4 ft.

The width of the rug is 2.5 ft.

Explanation:

The area of the rug is 10 ft.

The length of the rug be l.

Let us convert the inches to feet.

Thus, 18 inches =  1.5 ft

Thus, the length of the rug is l=1.5+w

Let the width of the rug be w.

Substituting these values in the formula of area of the rectangle, we get,

A=length\times width

10=(1.5+w)(w)\\10=1.5w+w^2\\w^2+1.5w-10=0

Solving the expression using the quadratic formula,

$w=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Substituting the values, we have,

$w=\frac{-15 \pm \sqrt{15^{2}-4 \cdot 10(-100)}}{2 \cdot 10}\\

$w=\frac{-15 \pm \sqrt{4225}}{20}$

$w=\frac{-15 \pm 65}{2 0}$

Thus,

w=\frac{-15 + 65}{2 0}\\w=\frac{50}{20} \\w=2.5  and   w=\frac{-15 - 65}{2 0}\\w=\frac{-80}{20} \\w=-4

Since, the value of w cannot be negative, the value of w is 2.5ft

Thus, the width of the rug is 2.5ft

Substituting w=2.5 in l=1.5+w, we get,

l=1.5+2.5\\l=4

Thus, the length of the rug is 4 ft.

4 0
3 years ago
Pls help me with the answer​
Katarina [22]

Answer:

-27

5

10

-13

Step-by-step explanation:

-9*3=-27   -*+=-

-25/-5=5   -/-=+

7-(-3)=7+3=10  -(-)=+

-2+-11=-13   -+-=-

8 0
3 years ago
Other questions:
  • The sum of two polynomials each of the degree 8 will be degree 8 true or false
    5·1 answer
  • 8. In a recent presidential election, Ohio had 18 electoral votes. This is 20 votes less than Texas had. How many electoral vote
    13·2 answers
  • ANSWER PLZ QUICK AND FAST
    5·2 answers
  • 3h-2(4h-5)=10-5h A-0 B-4 C-infinity many solutions D-no solutions​
    12·1 answer
  • What am a supposed to add
    10·1 answer
  • PLEASE HELP SUPER EASY check the file
    6·1 answer
  • Sino<br>o prove geometrically lim sinx/x=1​
    10·1 answer
  • Inscribed angles: find the value of each variable. The dot represents the center
    7·1 answer
  • If Aaron tunes into his favorite radio station at a randomly selected time, there is a 0.20 probability that a commercial will b
    14·1 answer
  • 20a-16=12(3-a), then a
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!