Problem 3: Let x = price of bag of pretzels Let y = price of box of granola bars
We have Lesley's purchase: 4x+2y=13.50
And Landon's: 1x+5y=17.55
We can use the elimination method. Let's negate Landon's purchase by multiplying by -1. -1x-5y=-17.55
We add this four times to Lesley's purchase to eliminate the x variable.
2y-20y=13.50-70.2
-18y=-56.7
y = $3.15 = Price of box of granola bars
Plug back into Landon's purchase to solve for pretzels.
x+5*3.15=17.55
x+15.75=17.55
x = $1.80 = price of bag of pretzels
Problem 4.
Let w = number of wood bats sold
Let m = number of metal bats sold
From sales information we have: w + m = 23
24w+30m=606
Substitution works well here. Solve for w in the first equation, w = 23 - m, and plug this into the second.
24*(23-m)+30m=606
552-24m+30m=606
6m=54
m=9 = number of metal bats sold
Therefore since w = 23-m, w = 23-9 = 14. 14 wooden bats were sold.
Answer:
We need to use
Step-by-step explanation:
We have to use the equation for passing through the points known as
y2-y1/x2-x1
-1-3/0-5= -4/-5
the answer is 4/5
decimal: 0.8
Answer:
It is expected that linearization beyond age 20 will be use a function whose slope is monotonously decreasing.
Step-by-step explanation:
The linearization of the data by first order polynomials may be reasonable for the set of values of age between ages from 5 to 15 years, but it is inadequate beyond, since the fourth point, located at
, in growing at a lower slope. It is expected that function will be monotonously decreasing and we need to use models alternative to first order polynomials as either second order polynomic models or exponential models.