25 and the farthest is also 24
The first thief takes (1/2 x + 1) . What remains ? x - (1/2x + 1)
So the 2nd thief takes 2/3 of [ x - (1/2x + 1) ]
What remains ? x - 2/3 [ x - (1/2x + 1) ]
So the 3rd thief takes 2/3 of { x - 2/3 [ x - (1/2x + 1) ] } and he takes 1 more .
What remains ? x - ( 2/3 { x - 2/3 [ x - (1/2x + 1) ] } + 1 )
And that whole ugly thing is equal to ' 1 ', so you can solve it for 'x'..
The whole problem from here on is an exercise in simplifying
an expression with a bunch of 'nested' parentheses in it.
===============================================
This is a lot harder than just solving the problem with logic and
waving your hands in the air. Here's how you would do that:
Start from the end and work backwards:
-- One diamond is left.
-- Before the 3rd thief took 1 more, there were 2.
-- That was 1/3 of what was there before the 3rd man took 2/3.
So he found 6 when he arrived.
-- 6 was 1/3 of what was there before the second thief helped himself.
So there were 18 when the 2nd man arrived.
-- 18 was 1 less than what was there before the first thief took 1 extra.
So he took his 1 extra from 19.
-- 19 was the remaining after the first man took 1/2 of all on the table.
So there were 38 on the table when he arrived.
Thank you for your generous 5 points.
A, because anything with a dilation will not be congruent as the original PQR :))
Answer:
g = number of girls;
b= number of boys
we know that: g= 6+2b
and that: g+b= 156 kids in total
so we may write g+b=(6+2b)+b=6+3b
but g+b= 156
so 6+3b = 156 => 3b= 156-6=150 => b=150/3=50 => b = 50 (number of boys)
g= 6+2b= 6+2 x 50= 106 => g =106 (number of girls)
Step-by-step explanation:
Answer:
x = 90°
3x = 270°
Step-by-step explanation:
Split the shape in half through the plane of 3x and x.
We can find the angle of x/2 is 45°.
Since x/2 = 45°, then we can fid that x=90°.
To find 3x, we simply multiply 90° 3 times.
So 3x = 270°.