1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
san4es73 [151]
3 years ago
7

What is the radius of the base of the cone in the figure below?

Mathematics
1 answer:
liubo4ka [24]3 years ago
7 0

Answer:  approximately 12.17 units

==========================================================

Work Shown:

We'll use the tangent ratio to find r

tan(angle) = opposite/adjacent

tan(49) = 14/r

r*tan(49) = 14

r = 14/tan(49)

r = 12.1700143294271

r = 12.17

The radius is approximately 12.17 units long.

You might be interested in
The perimeter of a rectangular table is 8 m.
ipn [44]

Answer:

The side lengths are 1.5m and 2.5m.

Step-by-step explanation:

8 0
3 years ago
The plate is rotated 90° about the origin in the counterclockwise direction. In the image trapezoid, what are the coordinates of
Jet001 [13]

Answer:

The coordinates of the endpoints of the side congruent to side EF is:

E'(-8,-4) and F'(-5,-7).

Step-by-step explanation:

<em>" when point M (h, k) is rotated about the origin O through 90° in anticlockwise direction or we can say counter clockwise. The new position of point </em><em>M (h, k) will become M' (-k, h) "</em>

We are given a trapezoid such that the vertices of trapezoid are:

E(-4,8) , F(-7,5) , G(-4,3) , H(-2,5)

Then the new coordinates after the given transformation is:

E(-4,8) → E'(-8,-4)

F(-7,5) → F'(-5,-7)

G(-4,3) → G'(-3,-4)

H(-2,5) → H'(-5,-2)

Hence the coordinates of the endpoints of the side congruent to side EF is:

E'(-8,-4) and F'(-5,-7).


4 0
3 years ago
La potencia que se obtiene de elevar a un mismo exponente un numero racional y su opuesto es la misma verdadero o falso?
malfutka [58]

Answer:

Falso.

Step-by-step explanation:

Sea d = \frac{a}{b} un número racional, donde a, b \in \mathbb{R} y b \neq 0, su opuesto es un número real c = -\left(\frac{a}{b} \right). En el caso de elevarse a un exponente dado, hay que comprobar cinco casos:

(a) <em>El exponente es cero.</em>

(b) <em>El exponente es un negativo impar.</em>

(c) <em>El exponente es un negativo par.</em>

(d) <em>El exponente es un positivo impar.</em>

(e) <em>El exponente es un positivo par.</em>

(a) El exponente es cero:

Toda potencia elevada a la cero es igual a uno. En consecuencia, c = d = 1. La proposición es verdadera.

(b) El exponente es un negativo impar:

Considérese las siguientes expresiones:

d' = d^{-n} y c' = c^{-n}

Al aplicar las definiciones anteriores y las operaciones del Álgebra de los números reales tenemos el siguiente desarrollo:

d' = \left(\frac{a}{b} \right)^{-n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{-n}

d' = \left(\frac{a}{b} \right)^{(-1)\cdot n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{(-1)\cdot n}

d' = \left[\left(\frac{a}{b} \right)^{-1}\right]^{n}y c' = \left[(-1)^{-1}\cdot \left(\frac{a}{b} \right)^{-1}\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c = (-1)^{n}\cdot \left(\frac{b}{a} \right)^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{b}{a} \right)\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[-\left(\frac{b}{a} \right)\right]^{n}

Si n es impar, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = - \left(\frac{b}{a} \right)^{n}

Puesto que d' \neq c', la proposición es falsa.

(c) El exponente es un negativo par.

Si n es par, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = \left(\frac{b}{a} \right)^{n}

Puesto que d' = c', la proposición es verdadera.

(d) El exponente es un positivo impar.

Considérese las siguientes expresiones:

d' = d^{n} y c' = c^{n}

d' = \left(\frac{a}{b}\right)^{n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = (-1)^{n}\cdot \left(\frac{a}{b} \right)^{n}

Si n es impar, entonces:

d' = \left(\frac{a}{b} \right)^{n} y c' = - \left(\frac{a}{b} \right)^{n}

(e) El exponente es un positivo par.

Considérese las siguientes expresiones:

d' = \left(\frac{a}{b} \right)^{n} y c' = \left(\frac{a}{b} \right)^{n}

Si n es par, entonces d' = c' y la proposición es verdadera.

Por tanto, se concluye que es falso que toda potencia que se obtiene de elevar a un mismo exponente un número racional y su opuesto es la misma.

3 0
3 years ago
The average of four numbers is 98. If three of those numbers are 86, 87, and 91, what is the fourth number?
BabaBlast [244]

Answer:

128

Step-by-step explanation:

86 plus 87 plus 91 =264  

You have to get 98 times 4 which is 392  

Then;

392-264, which is 128, which is the answer (the fourth number)  

So;

86+87+91+128 = 392 divided by 4 (the number of numbers there is) which equals 98!  

Hope it helped

Please mark me as Brainliest

4 0
3 years ago
Read 2 more answers
Does anyone please know the answer to this? Worth 30 points!!!
ch4aika [34]

Answer:

just graph the 2 points then do rise over run

Step-by-step explanation:

6 0
3 years ago
Other questions:
  • Help me pleasee , ill give brainlest .
    9·1 answer
  • According to the Rational Roots Theorem, which statement about f(x) = 25x7 – x6 – 5x4 + x – 49 is true?
    7·2 answers
  • Y varies directly as the square of x. If y is 25 when x is 3, find y when x is 2
    5·1 answer
  • The gas mileage for a certain model of car is known to have a standard deviation of 6 mi/gallon. A simple random sample of 64 ca
    6·1 answer
  • 7(х - Зу) = y + бу<br><br> Do it fast thanks
    10·2 answers
  • -3m+10=25 need this fast please!
    7·1 answer
  • What is the value of x when y = 6
    10·1 answer
  • What is the area and perimeter. please answer asap ​
    13·1 answer
  • Whoever gets it right can have brainliest, but answer ASAP!
    9·2 answers
  • HELPPP!!!
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!