I believe it is 1, but i'm not completely sure.
Answer:
x= -3 and y= 0
Step-by-step explanation:
5x+2y=-15
<u>2x-2y=-6 </u>
<u>7x =-21</u>
x= -3
Putting value of x in equation 1
5(-3) +2y=-15
-15+2y= -15
2y= 0
y= 0
This can be solved with the help of matrices
In matrix form the above equations can be written in the form
= ![\left[\begin{array}{ccc}-15\\-6\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-15%5C%5C-6%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Let
= A
= X and
= B
Then AX= B
or X= A⁻¹ B
where A⁻¹= adj A/ ║A║ where mod A≠ 0
adj A= ![\left[\begin{array}{ccc}-2&-2\\-2&5\/\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%26-2%5C%5C-2%265%5C%2F%5Cend%7Barray%7D%5Cright%5D)
║A║= ( 5*-2- 2*2)= -10-4= -14≠0
X= A⁻¹ B
=- 1/14
![\left[\begin{array}{ccc}-15\\-6\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-15%5C%5C-6%5C%5C%5Cend%7Barray%7D%5Cright%5D)
=- 1/14 ![\left[\begin{array}{ccc}-2*-15&+ -2*-6\\-2*-15&+ 5*-6\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%2A-15%26%2B%20-2%2A-6%5C%5C-2%2A-15%26%2B%205%2A-6%5C%5C%5Cend%7Barray%7D%5Cright%5D)
=- 1/14 ![\left[\begin{array}{ccc} 30&+12\\30&+-30\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%2030%26%2B12%5C%5C30%26%2B-30%5C%5C%5Cend%7Barray%7D%5Cright%5D)
=- 1/14 ![\left[\begin{array}{ccc}42\\0\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D42%5C%5C0%5C%5C%5Cend%7Barray%7D%5Cright%5D)
= ![\left[\begin{array}{ccc}-42/14\\0/-14\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-42%2F14%5C%5C0%2F-14%5C%5C%5Cend%7Barray%7D%5Cright%5D)
= ![\left[\begin{array}{ccc}-3\\0\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-3%5C%5C0%5C%5C%5Cend%7Barray%7D%5Cright%5D)
From here x= -3 and y= 0
Solution Set = [(-3,0)]
You must have been taught postulates and theorems that allow you to prove triangles congruent, such as SSS, SAS, ASA, etc. Look at the given information of a proof, and see how from the given information, using definitions, postulates, and theorems you have already learned, you can show pairs of corresponding sides and angles to be congruent that will fit into the above methods. Then use one of the methods to prove the triangles congruent.
Answer:
Step-by-step explanation:
You shift up and down when there is a value at the end of the function outside of the parentheses. Since it is -1, you shift down one.
You shift left and right when there is a value inside the parentheses. Since it is 2, you shift left 2. Remember that you always shift left if the number positive and you shift right when it is negative.