The answer is <span>a. T(n+1)=1/2n^2+3/2n+1
</span>
T(n) = 1/2n² + 1/2n = 1/2(n² + n)
T(n + 1) = 1/2((n+1)² + (n+1))
(a + b)² = a² + 2ab + b²
(n + 1)² = n² + 2n + 1
T(n + 1) = 1/2(n² + 2n + 1 + n + 1) =
= 1/2(n² + 3n + 2) =
= 1/2n² + 3/2n + 1
CDL+LDE=CDE
39+(-2+56x)=74x+1
39-2+56x=74x+1
37+56x=74x+1
74x-56x=37-1
18x=36
x=36/18
x=2
Answer:
8xy+4y-z
Step-by-step explanation:
Add values with the same variables; in this case xy
Answer:
Step-by-step explanation:
aaaaaaaaaaaaaaaaaaaaaa