Answer:
Step-by-step explanation:
Hello!
Your study variable is X: "number of ColorSmart-5000 that didn't need repairs after 5 years of use, in a sample of 390"
X~Bi (n;ρ)
ρ: population proportion of ColorSmart-5000 that didn't need repairs after 5 years of use. ρ = 0.95
n= 390
x= 303
sample proportion ^ρ: x/n = 303/390 = 0.776 ≅ 0.78
Applying the Central Limit Theorem you approximate the distribution of the sample proportion to normal to obtain the statistic to use.
You are asked to estimate the population proportion of televisions that didn't require repairs with a confidence interval, the formula is:
^ρ±
* √[(^ρ(1-^ρ))/n]
=
= 2.58
0.78±2.58* √[(0.78(1-0.78))/390]
0.0541
[0.726;0.834]
With a confidence level of 99% you'd expect that the interval [0.726;0.834] contains the true value of the proportion of ColorSmart-5000 that didn't need repairs after 5 years of use.
I hope it helps!
See attached for a sketch of some of the cross sections.
Each cross section has area equal to the square of the side length, which in turn is the vertical distance between the curve y = √(x + 1) and the x-axis (i.e. the distance between them that is parallel to the y-axis). This distance will be √(x + 1).
If the thickness of each cross section is ∆x, then the volume of each cross section is
∆V = (√(x + 1))² ∆x = (x + 1) ∆x
As we let ∆x approach 0 and take infinitely many such cross sections, the total volume of the solid is given by the definite integral,

Answer:
7/100
Step-by-step explanation:
Find the GCD (or HCF) of numerator and denominator
GCD of 70 and 100 is 10
Divide both the numerator and denominator by the GCD
70 ÷ 10
100 ÷ 10
Reduced fraction:
7
10
Therefore, 70/100 simplified to lowest terms is 7/10.