1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Hoochie [10]
3 years ago
5

HELP I NEED HELP ASAP

Mathematics
1 answer:
Orlov [11]3 years ago
4 0

Answer:

Answer is C. 3s + 9

Step-by-step explanation:

The perimeter is the sum of all 3 sides in a triangle

which is s+3 + s+3 + s+3

= 3s + 9

You might be interested in
Please help me
Kruka [31]

y = x^2 -4x

x = -1

y = (-1)^2 - 4×-1=1+4 = 5

x= 0

y = (0)^2 - 4×0 = 0

x = 1

y = 1^2 -4×1 = 1-4 = -3

x = 2

y = 2^2 -4×2 = 4-8 = -4

x=3

y = 3^2 - 4×3 = 9-12 = -3

x = 4

y = 4^2 - 4×4 = 16 - 16 = 0

now 2nd equation

y = 2x^2 + x

x = -2

y = 2 (-2)^2 + (-2)= 8-2 = 6

x = -1

y = 2 (-1)^2+(-1)= 2-1 = 1

x = 0

y = 2(0)^2 +0 = 0

x = 1

y = 2 (1)^2 + 1 = 3

x = 2

y = 2(2)^2+2= 8 + 2 = 10

6 0
2 years ago
Find the surface area of the composite figure rounded to the nearest hundredths. Use the pi button.
Nookie1986 [14]

Answer:

To find the area of composite figures and use area of a circle to find the radius.  Estimate the radius of the circle with the given area.

Step-by-step explanation:

I only say how you can founded

6 0
3 years ago
Again I am having some trouble on here
Julli [10]

I don't know honey, but I think it can be the 2nd choice, the answer...

50 miles/1 hour = ? miles/200 miles.

I hope I helped and goodluck :)

4 0
2 years ago
Let A = {a, b, c}, B = {b, c, d}, and C = {b, c, e}. (a) Find A ∪ (B ∩ C), (A ∪ B) ∩ C, and (A ∪ B) ∩ (A ∪ C). (Enter your answe
wariber [46]

Answer:

(a)

A\ u\ (B\ n\ C) = \{a,b,c\}

(A\ u\ B)\ n\ C = \{b,c\}

(A\ u\ B)\ n\ (A\ u\ C) = \{b,c\}

(A\ u\ B)\ n\ C = (A\ u\ B)\ n\ (A\ u\ C)

(b)

A\ n\ (B\ u\ C) = \{b,c\}

(A\ n\ B)\ u\ C = \{b,c,e\}

(A\ n\ B)\ u\ (A\ n\ C) = \{b,c\}

A\ n\ (B\ u\ C) = (A\ n\ B)\ u\ (A\ n\ C)

(c)

(A - B) - C = \{a\}

A - (B - C) = \{a,b,c\}

<em>They are not equal</em>

<em></em>

Step-by-step explanation:

Given

A= \{a,b,c\}

B =\{b,c,d\}

C = \{b,c,e\}

Solving (a):

A\ u\ (B\ n\ C)

(A\ u\ B)\ n\ C

(A\ u\ B)\ n\ (A\ u\ C)

A\ u\ (B\ n\ C)

B n C means common elements between B and C;

So:

B\ n\ C = \{b,c,d\}\ n\ \{b,c,e\}

B\ n\ C = \{b,c\}

So:

A\ u\ (B\ n\ C) = \{a,b,c\}\ u\ \{b,c\}

u means union (without repetition)

So:

A\ u\ (B\ n\ C) = \{a,b,c\}

Using the illustrations of u and n, we have:

(A\ u\ B)\ n\ C

(A\ u\ B)\ n\ C = (\{a,b,c\}\ u\ \{b,c,d\})\ n\ C

Solve the bracket

(A\ u\ B)\ n\ C = (\{a,b,c,d\})\ n\ C

Substitute the value of set C

(A\ u\ B)\ n\ C = \{a,b,c,d\}\ n\ \{b,c,e\}

Apply intersection rule

(A\ u\ B)\ n\ C = \{b,c\}

(A\ u\ B)\ n\ (A\ u\ C)

In above:

A\ u\ B = \{a,b,c,d\}

Solving A u C, we have:

A\ u\ C = \{a,b,c\}\ u\ \{b,c,e\}

Apply union rule

A\ u\ C = \{b,c\}

So:

(A\ u\ B)\ n\ (A\ u\ C) = \{a,b,c,d\}\ n\ \{b,c\}

(A\ u\ B)\ n\ (A\ u\ C) = \{b,c\}

<u>The equal sets</u>

We have:

A\ u\ (B\ n\ C) = \{a,b,c\}

(A\ u\ B)\ n\ C = \{b,c\}

(A\ u\ B)\ n\ (A\ u\ C) = \{b,c\}

So, the equal sets are:

(A\ u\ B)\ n\ C and (A\ u\ B)\ n\ (A\ u\ C)

They both equal to \{b,c\}

So:

(A\ u\ B)\ n\ C = (A\ u\ B)\ n\ (A\ u\ C)

Solving (b):

A\ n\ (B\ u\ C)

(A\ n\ B)\ u\ C

(A\ n\ B)\ u\ (A\ n\ C)

So, we have:

A\ n\ (B\ u\ C) = \{a,b,c\}\ n\ (\{b,c,d\}\ u\ \{b,c,e\})

Solve the bracket

A\ n\ (B\ u\ C) = \{a,b,c\}\ n\ (\{b,c,d,e\})

Apply intersection rule

A\ n\ (B\ u\ C) = \{b,c\}

(A\ n\ B)\ u\ C = (\{a,b,c\}\ n\ \{b,c,d\})\ u\ \{b,c,e\}

Solve the bracket

(A\ n\ B)\ u\ C = \{b,c\}\ u\ \{b,c,e\}

Apply union rule

(A\ n\ B)\ u\ C = \{b,c,e\}

(A\ n\ B)\ u\ (A\ n\ C) = (\{a,b,c\}\ n\ \{b,c,d\})\ u\ (\{a,b,c\}\ n\ \{b,c,e\})

Solve each bracket

(A\ n\ B)\ u\ (A\ n\ C) = \{b,c\}\ u\ \{b,c\}

Apply union rule

(A\ n\ B)\ u\ (A\ n\ C) = \{b,c\}

<u>The equal set</u>

We have:

A\ n\ (B\ u\ C) = \{b,c\}

(A\ n\ B)\ u\ C = \{b,c,e\}

(A\ n\ B)\ u\ (A\ n\ C) = \{b,c\}

So, the equal sets are:

A\ n\ (B\ u\ C) and (A\ n\ B)\ u\ (A\ n\ C)

They both equal to \{b,c\}

So:

A\ n\ (B\ u\ C) = (A\ n\ B)\ u\ (A\ n\ C)

Solving (c):

(A - B) - C

A - (B - C)

This illustrates difference.

A - B returns the elements in A and not B

Using that illustration, we have:

(A - B) - C = (\{a,b,c\} - \{b,c,d\}) - \{b,c,e\}

Solve the bracket

(A - B) - C = \{a\} - \{b,c,e\}

(A - B) - C = \{a\}

Similarly:

A - (B - C) = \{a,b,c\} - (\{b,c,d\} - \{b,c,e\})

A - (B - C) = \{a,b,c\} - \{d\}

A - (B - C) = \{a,b,c\}

<em>They are not equal</em>

4 0
3 years ago
The following is the frequency distribution for the speed of a sample of automobiles traveling on an interstate highway. Speed (
svlad2 [7]

Answer:

Standard Deviation is 18.57 .

Step-by-step explanation:

We are given the frequency distribution for the speed of a sample of automobiles traveling on an interstate highway;

  Speed (mph)     Frequency (f)      X         X*f           X - Xbar        (X-Xbar)^{2}

     50 - 54                    4                52       208         52 - 65 = -13         169

     55 - 59                    3                57        171           57 - 65 = -8           64

     60 - 64                    2                62        124          62 - 65 = -3            9

     65 - 69                    5                67        335          67 - 65 = 2             4

     70 - 74                     2                72        144           72 - 65 = 7            49

     75 - 79               <u>      5       </u>         77     <u>   385    </u>      77 - 65 = 12          144

                                <u> ∑f = 21   </u>              ∑X*<u>f = 1367 </u>            

Mean of the data, Xbar = \frac{\sum Xf}{\sum f}

                                       = \frac{1367}{21} = 65.09 ≈ 65 .        

Now, Standard deviation, s = \sqrt{\frac{\sum f*(X-Xbar)^{2} }{n-1}}

s =  \sqrt{\frac{(4*169)+(3*64)+(2*9)+(5*4)+(2*49)+(5*144)}{6-1} } = \sqrt{\frac{1724}{5} } = 18.57

Therefore, standard deviation is 18.57 .

           

5 0
2 years ago
Other questions:
  • What is the volume of this cube? Enter you answer as a decimal in the box.
    5·1 answer
  • Deviation is the difference between any value and the mean of the set
    15·1 answer
  • What is the ratio of 9 gallons to 21 quarts?(convert the measurements)
    5·1 answer
  • Distance between (5,8) (-1,-4)? ​
    7·2 answers
  • (23 + ) + 19 = 23 + ( + 19)
    11·1 answer
  • A tree diagram is helpful when finding the number of
    6·2 answers
  • How is solving literal equations like solving equations in one variable
    8·2 answers
  • I need help this is due at 11:40 and its 11:33 i only 2 more questions
    5·1 answer
  • -ABC
    9·2 answers
  • What is 324x11=? I need help
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!